期刊文献+

基于分数阶Hilbert变换二维纹理特征的罗音检测算法

Algorithm of Crackle Detection Based on Two-Dimensional Texture Features by Fractional Hilbert Transform
下载PDF
导出
摘要 为了自动化地检测肺音中间断性异常呼吸音——罗音,基于新兴的分数阶Hilbert变换信号分析手段,提出一种新的检测算法。在不同阶数下,将分数阶Hilbert变换作用于肺音信号,由此可生成一个与该信号对应的二维纹理图像,纹理图像中呈现的明暗相间条纹组合的特征与罗音信号特征相对应,据此可实现罗音检测。分别进行两组检测实验,一组采用仿真的罗音叠加于实际肺音上进行罗音检测,100%的罗音被检测出,另一组采用美国胸科学会教学数据库包含真实罗音的肺音信号进行检测,敏感性指标达到97%,从而验证基于分数阶Hilbert变换的方法检测罗音的有效性。 In order to detect an important kind of abnormal and discontinuous respiratory sounds crackles in lung sounds, a new detection algorithm has been proposed based on an emerging theory of fractional Hilbert transform. By applying fractional Hilbert transform to lung sound signals, a two-dimension image with texture feature can be generated. The features of combination of dark and bright interlaced strips in texture images were corresponding to features of crackle signals in lung sounds, which can be employed to detect crackles. Two groups of detection experiments were carried out. First, real normal lung sounds signals with simulated crackles embedded were tested, and 100% crackles were detected. Then, lung sounds of patients with pulmonary disease were tested, and the sensitivity of detection accuracy reached to 97%. Thus, the effectiveness of crackle detection based on fractional Hilbert transform has been validated.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2013年第3期299-304,共6页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金(81070612)
关键词 信号检测 分数阶Hilbert变换 特征提取 罗音检测 signal processing fractional I-Iilbert transform feature extraction crackle detection
  • 相关文献

参考文献14

  • 1Gavriely N, Breath sounds methodogy [M] //Breath sounds inthe time domain: crackles. Florida: CRC Press, 1995:18 -29.
  • 2Reiehert S, Gass R, Brandt C, et al. Analysis of respiratory sounds: state of the art [ J]. Clinical Medicine: Circulatory, Respiratory and Pulmonary Medicine, 2008, 2(5 ) : 45 -58.
  • 3Murphy RLH, Holford SK, Knowler WC. Visual lung-sound characterization by time-expanded wave-form analysis [ J ]. New Eng J Med, 1977, 296(17) : 968 -971.
  • 4Kaisla T, Sovijarvi A, Piirila P, et al. Validated method for automatic detection of lung sound crackles [ J ]. Medical Biological Engineering & Computing, 1991, 29(5) : 517 -521.
  • 5Dorantes G, Charleston S, Gonzalez R, et al. Crackles detection using a time-variant autoregressive model [ C ]. // Dumont G, Galiana H, eds. 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vancouver: IEEE, 2008 : 1894 - 1897.
  • 6Yeginer M, Kahya YP. Feature extraction for pulmonary crackle representation via wavelet networks [ J ]. Computers in Biology and Medicine, 2009, 39(8): 713 -721.
  • 7Lu Xiaoguang, Bahoura M. An integrated automated system for crackles extraction and classification [ J ]. Biomedical Signal Processing and Control, 2008, 3 (3) : 244 - 254.
  • 8Du Minghui, Chan FHY, Lain FK, et al. Crackle detection and classification based on matched wavelet analysis [ C ]. // Jaeger R,eds. 1997 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Chicago: IEEE, 1997 : 1638 - 1641.
  • 9Sonia C, Ramon G, Tomas A. Crackle sounds analysis by empirical mode decomposition [ J ]. IEEE Engineering in Medicine and Biology Magazine, 2007, 26( 1 ) : 40 -47.
  • 10Lohmann AW , Softer EH. Fractional Hilbert Transform [ J]. Opt Lett, 1996, 21:281 -283.

二级参考文献14

  • 1刘毅,张彩明,赵玉华,董亮.基于多尺度小波包分析的肺音特征提取与分类[J].计算机学报,2006,29(5):769-777. 被引量:31
  • 2Gavriely N.Breath sounds methodology[M].Boca Raton:CRC Press,1995:18-22.
  • 3Dorantes G,Charleston S,Gonzalez R,et al.Crackles detection using a time-variant autoregressive model[C]//30th IEEE Engineering in Medicine and Biology Society Conference.Vancouver:IEEE Engineering in Medicine and Biology Society,2008:1894-1897.
  • 4Kaisla T,Sovijarvi A,Piirilla P,et al.Validation method for automatic detection of lung sound crackles[J].Medical & Biological Engineering & Computing,1991,29(5):517-521.
  • 5Ono M,Arakawa K,Mori M,et al.Separation of fine crackles from vesicular sounds by a nonlinear digital filter[J].IEEE Transactions on Biomedical Engineering,1989,36(2):286-288.
  • 6Kandaswamy A,Kumar C S,Ramanathan R P,et al.Neural classification of lung sounds using wavelet coefficients[J].Computers in Biology and Medicine,2004,34 (4):523-537.
  • 7Li Z Z,Du M H.HHT based lung sound crackle detection and classification[C]//International Symposium on Intelligent Signal Processing and Communications Systems.Hong Kong:The Chinese University of Hong Kong,2005:385-388.
  • 8Ran Tao,Li Xue-mei,Wang Yue.Generalization of the fractional Hilbert transform[J].IEEE Signal Processing Letters,2008,15:365-368.
  • 9Pei S C,Yeh M H.Discrete fractional Hilbert transform[J].IEEE Transactions on Circuits and Systems—Ⅱ:Analog and Digital Signal Processing,2000,47 (11):1307-1311.
  • 10Davis J A,McNamara D E,Cottrell D M,et al.Analysis of the fractional Hilbert transform[J].Applied Optics,1998,37(29):6911-6913.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部