期刊文献+

基于改进Snake算法的坡口中光致等离子体图像分割 被引量:1

Image Segmentation of Laser Induced Plasma Inside Groove Based on Modified Snake Algorithm
下载PDF
导出
摘要 光致等离子体是CO2激光焊的重要现象。厚板激光焊时,坡口中的光致等离子体图像受熔池等噪声影响,传统边缘提取算法易产生伪边缘,给后续分析计算带来困难。设计了坡口中光致等离子体图像采集系统,所获得的图像经高斯滤波后,为了克服熔池对光致等离子云图像的干扰,改进了主动轮廓模型Snake算法,基于OTSU算法完成等离子云图像的二值化和初步分割,设计了Snake模型能量函数并优化了相关参数,提取了坡口中光致等离子体边缘,与传统Sobel算子等方法比较,提高了等离子云边缘提取的准确性和可靠性。 Laser induced plasma is an important phenomenon during high power CO2 laser welding. Plasma image inside groove is affected by molten pool interference for thick steel plate. Pseudo edge extracted by traditional image processing algorithm lead to the failure of further analysis. Specific acquisition system was setup to capture plasma image inside groove. As an emerging active contour model, Snake algorithm was modified to overcome the interference of molten pool. Binary plasma image was obtained by optimized threshold .The otsu algorithm after image was filtered. Energy functions and relevant parameters of Snake model were designed to extract more credible and rational edge of plasma plume. Compared with the traditional methods, the experimental results show that the precision of plasma image segmentation is greatly improved.
出处 《热加工工艺》 CSCD 北大核心 2013年第11期175-179,共5页 Hot Working Technology
关键词 SNAKE算法 OTSU算法 图像分割 坡口 光致等离子体 Snake algorithm Otsu algorithm image segmentation groove laser induced plasma
  • 相关文献

参考文献8

  • 1Hoffman J, Szymanski Z. Time-dependent spectroscopy of plasma plume under laser welding conditions [J]. Journal of Physics D: Applied Physics, 2004, 37(13): 1792-1799.
  • 2Liu J H, Zhang F S, Ma L C, et al. Study on three-dimension synchrony high-speed photography of plasma during CO2 laser welding [C] // Proceedings of SPIE, 2005, 5629: 149-154.
  • 3Li Guohua, Cai Yan, Wu Yixiong. Stability information in plasma image of high-power CO2 laser welding[J]. Optics and Lasers in Engineering, 2009, 47: 990-994.
  • 4Seto N, Katayama S, Mizutani M, et al. Relationship between plasma and keyhole behavior during CO2 laser welding [C]// Proceedings of SPIE, 2000,3888 : 61-68.
  • 5Hu Lianhai, Huang Jian, Li Zhuguo, et al. Study on multipass welding of thick section steels using CO2 laser welding [C] //63rd Annual Assembly & International Conference of the International Institute of Welding, 2010, July: 725-729.
  • 6Hamadou M, Fabbro R, Coste F, et al. Experimental study of COz laser welding inside a groove - Application to high thickness laser welding [J]. Journal of Laser Applications, 2005, 17(3): 178-182.
  • 7兰红,张璐.分水岭优化的Snake模型肝脏图像分割[J].中国图象图形学报,2012,17(7):873-879. 被引量:22
  • 8章毓晋.图像分析[M].第2版.北京:清华大学出版社,2005:129-132.

二级参考文献3

共引文献21

同被引文献11

  • 1Poirier J D,Vel S S,Caccese V. Multi-objective op-timization of laser-welded steel sandwich panels forstatic loads using a genetic algorithm [J].EngineeringStructures, 2013,49: 508-524.
  • 2Vinson J R. Sandwich structures: Past, present,andfuture. Sandwich Structures 7 : Advancing with sand-wich structures and materials [ M].Netherlands :Springer,2005 : 3-12.
  • 3Chang D, Son D,Lee J, et al. A new seam-trackingalgorithm through characteristic-point detection for aportable welding robot [J].Robotics and Computer-Integrated Manufacturing,2012,28(1) ; 1-13.
  • 4Lee S K, Na S J. A study on automatic seam trackingin pulsed laser edge welding by using a vision sensorwithout an auxiliary light source [J].Journal of Man-ufacturing Systems, 2002, 21(4) ; 302-315.
  • 5Gao X D, Zhong X G,You D Y,扣 al. Kalman filte-ring compensated by radial basis function neural net-work for seam tracking of laser welding [J].IEEETransactions on Control Systems Technology, 2013,21(5): 1916-1923.
  • 6Gao X D,You D Y,Katayama S. Seam tracking mo-nitoring based on adaptive Kalman filter embeddedElman neural network during high-power fiber laserwelding [J].IEEE Transactions on Industrial Elec-tronics, 2012,59(11) : 4315-4325.
  • 7Dorsch F,Braun H, Kessler S,et al. Online NIR di-agnostic of laser welding processes and its potentialfor quality assuring sensor systems[C] //SPIE LASE.USA:International Society for Optics and Photonics,2014: 89630R-89630R-11.
  • 8Oezmert A,Drenker A, Nazery V. Detectability ofpenetration based on weld pool geometry and processemission spectrum in laser welding of copper [J].Physics Procedia, 2013,41: 502-507.
  • 9Nicolosi L, Abt F. Blug A, et al. A novel spatterdetection algorithm based on typical cellular neuralnetwork operations for laser beam welding processes[J].Measurement Science and Technology, 2012,23(1): 015401.
  • 10Won-Ik Cho W I,Na S J N,Thorny C,et al. Nu*merical simulation of molten pool dynamics in highpower disk laser welding [J].Journal of MaterialsProcessing Technology, 2012. 212(1): 262-275.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部