期刊文献+

带预测参数的同伦分析方法及其在两个非线性系统中的应用(英文) 被引量:1

Predictor homotopy analysis method and its application to two nonlinear systems
下载PDF
导出
摘要 在传统同伦分析法(HAM)的基础上,新方法(PHAM)通过引入一个预测参数及相关条件来预测一个非线性微分系统是否具有多个解,通过将此方法分别应用到两个非线性微分系统中,成功地获得了相应系统多个有效的解析近似解. Based on traditional homotopy analysis method (HAM), this method (PHAM) introduced a so-called prescribed parameter and associated condition to prove whether a nonlinear differential system admits multiple solutions. The PHAM was applied to two nonlinear differential systems and multiple solutions of associated system were obtained.
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第3期131-139,148,共10页 Journal of East China Normal University(Natural Science)
基金 国家自然科学基金(11071274)
关键词 解析近似解 非线性微分系统 带预测参数的同伦分析法(PHAM) analytic approximate solution nonlinear differential system predictor homotopy analysis method (PHAM)
  • 相关文献

参考文献16

  • 1LIAO S J.Beyond Perturbation:Introduction to the Homotopy Analysis Method[M].London:Chapman and Hall/CRC,2004.
  • 2LIAO S J.An approximate solution technique not depending on small parameters:a special example[J].International Journal of Non-Linear Mechanics,1995,30(3):371-380.
  • 3Shijun LIAO (Department of Naval Architecture & Ocean Engineering, Shanghai Jiao Tong Univ.,Shanghai 200030, P. R. China) E-mail:.Homotopy Analysis Method: A New Analytical Technique for Non-linear Problems 1[J].Communications in Nonlinear Science and Numerical Simulation,1997,2(2):95-100. 被引量:3
  • 4LIAO S J.On the homotopy analysis method for nonlinear problems[J].Applied Mathematics and Computation, 2004,147(2):499-513.
  • 5WAZWAZ A M.A reliable algorithm for obtaining positive solutions for nonlinear boundary value problems[J]. Computers & Mathematics with Applications,2001,41(10-11):1237-1244.
  • 6BASHA H A,KASSAB B G.Analysis of water distribution systems using a perturbation method[J].Applied Mathematical Modelling,1996,20(4):290-297.
  • 7KHANIN R,CARTMELL M,GILBERT A.A computerised implementation of the multiple scales perturbation method using Mathematical].Computers & Structures,2000,76(5):565-575.
  • 8WANG M H,KUO Y E.A perturbation method for solving linear semi-infinite programming problems[J].Computers & Mathematics with Applications,1999,37(4-5):181-198.
  • 9MA W X,FUCHSSTEINER B.Integrable theory of the perturbation equations[JJ.Chaos,Solitons & Fractals, 1996,7(8):1227-1250.
  • 10MA W X,HUANG T W,ZHANG Y.A multiple exp-function method for nonlinear differential equations and its application[J].Physica Scripta,2010,82(6):065003.

共引文献2

同被引文献14

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部