期刊文献+

机械球磨在碳纳米管铝基含油轴承制备中的作用 被引量:3

Effect of mechanical milling on preparing carbon nanotubes aluminum base oil-impregnated bearing
下载PDF
导出
摘要 采用机械球磨法制备添加不同含量(10.0%、0.5%,质量分数)碳纳米管的铝基混合粉末及烧结含油轴承,测定轴承的压溃强度和含油率,采用SEM和XRD分析物料的显微形貌和物相组成,研究了机械球磨的混料效果,分析了球磨时间对轴承的压溃强度和含油率的影响规律及其机理。结果表明,机械球磨能实现碳纳米管和铝粉的均匀混合,球磨后的铝粉呈片状或层状结构,碳纳米管被剪短后弥散分布在铝粉颗粒中;球磨能促使碳元素在铝粉中固溶,使得铝的晶面衍射角向左偏移、晶面间距变大;由于碳原子的固溶强化及碳纳米管的弥散强化,铝基含油轴承的压溃强度显著提高,机械球磨12h的样品的压溃强度达到198MPa,含油率约为17.0%,具有一定的实用价值。 The aluminum powders were mixed with 10. 0wt% and 0. 5wt% MWNTs respectively by mechanical milling, and the oil-impregnated bearing was prepared by sintering. The crushing strength and oil content of the bearing were measured. The microstructure and phase of mixed powder were analyzed by SEM and XRD. The mixing results and the effect of milling time on crushing strength and oil content were investigated. It is shown that carbon nanotubes and aluminum powder can be well-mixed by mechanical milling. The milled aluminum powders become to sheet-like or layered structure, and carbon nanotubes are cut off and dispersed in aluminum particles. Mechanical milling promotes the solid solution of carbon element in aluminum powders ,makes the diffraction angel of the crystal plane of aluminum offset to the left and increases the distance of crystal plane of aluminum. Due to the solid solution strengthening of carbon atom and dispersion strengthening of small carbon nanotubes, the crushing strength of aluminum base oil-impregnated bearing increases significantly. The strength of samples reaches 198MPa and oil content is about 17.0% after milled for 12h, which can be used in practice.
出处 《粉末冶金技术》 CAS CSCD 北大核心 2013年第2期128-131,共4页 Powder Metallurgy Technology
基金 四川省教育厅重点项目(12ZA158) 西华大学创新基金资助项目(ycjj201259)
关键词 铝基含油轴承 碳纳米管 机械球磨 显微结构 压溃强度 aluminum base oil-impregnated bearing carbon nanotube mechanical milling mierostructure crushing strength
  • 相关文献

参考文献11

  • 1贾成厂.烧结金属含油轴承[J].金属世界,2011(1):28-34. 被引量:16
  • 2韩凤麟.烧结金属含油轴承设计与应用(五)[J].粉末冶金工业,1993,3(1):11-15. 被引量:2
  • 3渡边侊尚,韩凤麟.烧结含油轴承[J].粉末冶金技术,2002,20(3):121-128. 被引量:33
  • 4杨益,杨盛良.碳纳米管增强金属基复合材料的研究现状及展望[J].材料导报,2007,21(F05):182-184. 被引量:25
  • 5Esawi A M K, Morsi K, Sayed A, et al. Fabrication and properties of dispersed carbon nanotube-aluminum composites. Materials Science and Engineering A, 2009, 508 (16) : 167 - 173.
  • 6Esawi A M K, Morsi K, Sayed A, et al. The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminum composites. Composites (Part A), 2011, 42(3) : 234 -243.
  • 7Esawi A M K, Morsi K. Dispersion of carbon nanotubes (CNTs) in aluminum powder. Composites (Part A), 2007, 38 (5) : 646 -650.
  • 8Prez-Bustamante R, G6mez-Esparza C D, Estrada-Guel I. Microstructural and mechanical characterization of AI-MWCNT composites produced by mechanical milling. Materials Science and Engineering A, 2009, 502(1/2) : 159 - 163.
  • 9邓春锋.碳纳米管增强铝基复合材料的制备及组织性能研究.哈尔滨工业大学,2011.
  • 10陈振华,陈鼎.机械合金化与固液反应球磨.北京:化学工业出版社,2005:492

二级参考文献36

共引文献68

同被引文献43

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部