期刊文献+

基于插入-分段的无等待流水作业调度复合启发式算法 被引量:2

Insertion-segment based composite heuristic algorithm for no-wait flow shop scheduling problems
下载PDF
导出
摘要 为求解NP-难的总完工时间最小化的无等待流水作业调度问题,提出一种有效复合启发式算法.通过分析基本操作的目标增量性质,构造基于插入-分段(I-S)的邻域结构和操作,提出了基于I-S的复合启发式算法(ISCH).ISCH算法与基于比较的启发式算法(BE)、基于置换的复合启发式算法(PH1(p))、Framinan等提出的复合启发式算法(FNM)和基于可变邻域搜索的混合遗传算法(GA-VNS)的比较结果表明,ISCH算法性能最佳,其平均相对偏差的均值较BE算法降低2.04%,平均运行时间为FNM算法的18.43%.当存在时间约束时,ISCH算法的平均相对偏差较GA-VNS算法降低0.99%.该算法中,目标增量方法的选用降低了运行时间,基于I-S邻域结构的方法则提高了算法性能. To solve the NP-hard(no-deterministic polynomial-time hard) no-wait flow shop scheduling problem with total completion time minimization,an effective composite heuristic algorithm is presented.By analyzing the increment properties of fundamental operators and constructing an insertion-segment(I-S) based neighborhood structure and its operation,an insertion-segment based composite heuristic algorithm(ISCH) is proposed.The comparison results of the ISCH algorithm,the heuristic algorithm based on comparison(BE),the heuristic algorithm based on pair-wise exchange(PH1(p)),the heuristic algorithm presented by Framinan et al.(FNM) and the hybrid genetic algorithm with variable neighborhood search(GA-VNS) show that the ISCH algorithm outperforms the other algorithms.The average value of the average relative percent deviation(ARPD) of the ISCH algorithm is less than that of BE algorithm by 2.04%.And the average computation time of the ISCH algorithm is 18.43% of that of the FNM algorithm.When time is limited,the ARPD of the ISCH algorithm is lower than that of the GA-VNS algorithm by 0.99%.In this algorithm,the increment-properties-based method can decrease the computation time,and the method based on I-S neighborhood structure can enhance the efficiency.
作者 李亚志 朱夏
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第3期483-488,共6页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(61003158)
关键词 无等待流水作业 总完工时间 邻域结构 启发式算法 no-wait flow shop total completion time neighborhood structure heuristic algorithm
  • 相关文献

参考文献1

二级参考文献10

  • 1Gangadharan R,,Rajendran C.Heuristic algorithms for scheduling in the no-wait flowshop[].International Journal of Production Economics.1993
  • 2Rajendran C.A no-wait flowshop scheduling heuristic to minimize makespan[].Journal of the Operational Research Society.1994
  • 3Grabowski J,Pempera J.Some local search algorithms for no-wait flow-shop problem with makespam criterion[].Computers and Operations Research.2005
  • 4Li X P,Wang Q,Wu C.Efficient Composite Heuristics for Total FlowtimeMinimization in Permutation Flow Shops[].OmegaAccepted.
  • 5Kalczynski P J,Kamburowski J.On the NEH heuristic for minimizing the makespan in permutation flow shops[].Omega.2007
  • 6Hall N G,Sriskandarajah C.A survey of machine scheduling problems with blocking and no-wait in process[].Operations Research.1996
  • 7Garey M R,Johnson D S,Sethi R.The complexity of flow shop and job shop scheduling[].Mathematics of Operations Research.1976
  • 8MC Bonney,SW Gundry.Solutions to the constrained flow-shop sequencing problem[].Oper Res Quart.1976
  • 9JR King,AS Spachis.Heuristics for flow-shop scheduling[].International Journal of Production Research.1980
  • 10Tariq ldowaisan and Ali llahverdi.New heuristics for no-wait flowshops to minimize makespan[].Computers and Operations Research.2003

共引文献4

同被引文献26

  • 1Rajendran C, Chaudhuri D. Heuristic algorithms for continuous flow-shop problem[J]. Naval Research Logistics, 1990, 37 (5) : 695 - 705.
  • 2Bertolissi E. Heuristic algorithm for scheduling in the no-wait flow-shop[J]. Journal of Materials Teehnology, 2000, 107 ( 1 ) : 459 -465.
  • 3Li Y Z, Zhu X. Insertion-segment based composite heuristic algorithm tbr no-wait flow shop scheduling problems[J]. Journal of Southeast Uni- versity: Natural Science Edition, 2013, 43(3) : 483 -488.
  • 4Laha D, Sapkal S U. An improved heuristic to minimize total flow time fill" scheduling in the m-machine no-wait flow shop[ J ]. Computers & Industrial Engineering, 2014, 67:36-43.
  • 5Aldowaisan T, Allahverdi A. New heuristics for m-machine no-wait flowshop to minimize total completion time[ J]. Omega, 2004, 32 (5) : 345 - 352.
  • 6Framinan J M, Nageno M S, Moccellin J V. An efficient heuristic for total flowtime mininlization in no-wait tlowshops[ J ]. International Jour- nal of Advanced Manufacturing Technology, 2010, 46 : 104-9 - 1057.
  • 7Pan Q K, Tasgetiren M F, Liang Y C. A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem[ J ]. Com- puters &" Operations Research, 2008, 35 (9) : 2807 -2839.
  • 8Gao K Z, Pan Q K, I~i J Q. Discrete harmony search algorithm for the no-wait flow shop scheduling problem with total flow time criterion[ J]. International Journal of Advanced Manufacturing Technolo~, 2011, 56 : 683 - 692.
  • 9Jarboui B, Eddaly M, Siarry P. A hybrid genetic algorithm for solving no-wait flowshop scheduling problems[ J]. International Journal of Ad- vanced Manufacturing Technology, 2011, 54 : 1129 - 1143.
  • 10Karthikeyan S, Asokan P, Nickolas S. A hybrid discrete firefly algorithm for multi-objective flexible job shop scheduling problem with limited resource constraints [ J ]. International Journal of Advanced Manufacturing Technology, 2014, 72 : 1567 - 1579.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部