期刊文献+

基于多物理场耦合的混凝土湿热变形数值模拟 被引量:11

Multi-physical field coupling simulation of hygro-thermal deformation of concrete
下载PDF
导出
摘要 为研究混凝土湿热耦合变形,基于混凝土微观组成结构特点,根据多物理场耦合作用和多孔介质湿热传输原理,建立了混凝土湿-热-力多物理场模型.并利用COMSOL数值仿真软件和提出的混凝土湿膨胀系数,在人机交互环境下,实现湿-热-力耦合数值求解.首先以Hundt试验为算例,验证了耦合模型和求解方法的可行性,然后利用该方法对某隧道混凝土湿热耦合变形进行了模拟计算.将多物理场耦合数值模拟结果与解析-有限元结合解法计算结果和现场光纤光栅监测结果对比表明,基于多物理场耦合的混凝土湿热耦合变形数值模拟更接近监测结果,更能反映实际物理过程且具备更好的通用性. Based on the microstructure of concrete,a hygro-thermo-mechanical model is established to investigate the hygro-thermal deformation of concrete according to the coupling effect of multi-physical field and the transfer mechanism of moisture and heat in porous medium.The COMSOL software is used to solve the hygro-thermo-mechanical coupling question in an interactive environment with the help of the presented moisture expansion coefficient of concrete.The feasibility of the model and the solution method is validated by Hundt's experimental results.And the hygro-thermal deformation of a lake tunnel is also numerically simulated by COMSOL.The result of COMSOL multi-physical numerical simulation,the numerical result of hybrid analytic-finite element method(A-FEM) method and the fiber Bragg grating(FBG) monitoring data are comparatively analyzed.It is revealed that the COMSOL simulation result is more close to the field test data than that of the A-FEM method.It can be concluded that the COMSOL simulation is more adequate to reveal the physical progress of concrete deformation with better feasibility.
作者 陈德鹏
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第3期582-587,共6页 Journal of Southeast University:Natural Science Edition
基金 国家重点基础研究发展计划(973计划)资助项目(2010CB735801) 国家自然科学基金资助项目(51108002) 安徽省高等学校自然科学基金重点资助项目(KJ2011A049)
关键词 多物理场 混凝土 湿热变形 多孔介质 数值模拟 multi-physical field concrete hygro-thermal deformation porous medium numerical simulation
  • 相关文献

参考文献14

  • 1Shoukry S N,William G W, Downie B, et al. Effectof moisture and temperature on the mechanical propertiesof concrete [ J]. Construction and Building Materials,2011,25(2) : 688-696.
  • 2Mehta P K. Durability—critical issues for the future[J]. Concrete International, 1997,19(7) : 27 -32.
  • 3Hossain K M A, Lachemi M. Strength, durability andmicro-structural aspects of high performance volcanicash concrete [ J ]. Cement and Concrete Research,2007,37(5) : 759-766.
  • 4De Borst R. Challenges in computational materials sci-ence: multiple scales, multi-physics and evolving dis-continuities [J ]. Computational Materials Science,2008,43(1) : 1-15.
  • 5Bazant Z P, Yu Q, Li G H,et al. Modeling of creepand hygrothermal deformations of concrete : intriguingconsequences of nano-porosity [ C ]//The Fourth BiotConference on Poromechanics. Columbia, USA,2009:3-16.
  • 6Tariku F, Kumaran K, Fazio P. Transient model forcoupled heat, air and moisture transfer through multilay-ered porous media [ J]. International Journal of Heatand Mass Transfer, 2011,53( 15/16) : 3035 -3044.
  • 7Sykora J, Sejnoha M,Sejnoha J. Homogenization ofcoupled heat and moisture transport in masonry struc-tures including interfaces[ J]. Applied Mathematics andComputation, 2013,219(13) : 7275 -7285.
  • 8Jensen O M,Hansen P F. Autogenous deformation andRH-change in perspective [ J ]. Cement and ConcreteResearch, 2001,31(12) : 1859 - 1865.
  • 9Chang W J, Weng C I. Analytical solution to coupledheat and moisture diffusion transfer in porous materials[J]. International Journal of Heat and Mass Transfer ^2000,43(19) : 3621 -3632.
  • 10Chen D, Qian C,Liu C. A numerical simulation ap-proach to calculating hygrothermal deformation of con-crete based on heat and moisture transfer in porous me-dium[ J]. International Journal of Civil Engineering,2010,8(4) : 287-296.

二级参考文献19

  • 1[1]Noorishad J,Tsang C F.Coupled thermohydroelasticity phenomena in variably saturated fractured porous rocks-formulation and numerical solution[A].In:Stephansson O,Jing L,Tsang CF ed.Coupled Thermo-Hydro-Mechanical Processes of Fractured Media[C].Amsterdam:Elsevier Science Publishers,1996.93-134.
  • 2[2]Biot M A.General theory of three-dimensional consolidation[J].Journal of Applied Physics,1941,12:144-164.
  • 3[3]Minkoff S E,Stone C M,Bryant S,et al.Coupled fluid flow and geomechanical deformation modelling[J].Journal of Petroleum Science and Engineering,2003,38:37-56.
  • 4[4]Fredrich J,Arguello J,Thome B,et al.Three-dimensional geomechanical simulation of reservoir compaction and implications for well failures in the Belridge Diatomite[A].In:Proceedings of SPE Annual Technical Conference and Exhibition[C].[s.l.]:[s.n.],1996.195-210.
  • 5[5]Tsang C F.Linking thermal,hydrological,and mechanical processes in fractured rocks[J].Annu.Rev.Earth Planet.Sci.,1999,27:359-384.
  • 6[6]Zhao C,Hobbs B E,Muhlhaus H B,et al.Computer simulations of coupled problems in geological and geochemical systems[J].Computer Methods in Applied Mechanics and Engineering,2002,191:3 137-3 152.
  • 7[7]Rutqvist J,Tsang C F.Analysis of thermal-hydrologic-mechanical behavior near an emplacement drift at Yucca Mountain[J].Journal of Contaminant Hydrology,2003,62-63:637-652.
  • 8[8]Oldenburg C M,Pruess K,Bensen S M.Process modeling of CO2 injection into natural gas reservoirs for carbon sequestration and enhanced gas recovery[J].Energy and Fuels,2001,15:293-298.
  • 9[10]COMSOL.FEMLAB User's Guide and Introduction(Version 2.2)[R].[s.L.]:COMSOL,2002.
  • 10[11]Wang Y L,Dusseault M B.A coupled conductive-convective thermal-poroelastic solution and implications for wellbore stability[J].Journal of Petroleum Science and Engineering,2003,38:187-198.

共引文献65

同被引文献122

引证文献11

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部