期刊文献+

RTM框架下基于分层拓扑结构的多机器人系统地图拼接 被引量:6

Map Merging for Multi-robot Systems Based on Hierarchical Topology Structure under RTM Framework
原文传递
导出
摘要 针对大规模的未知环境,在机器人中间件技术(RTM)框架下,提出了一种基于视觉特征的拓扑地图节点匹配方法,并结合局部扫描匹配策略,实现多机器人系统地图拼接.该方法首先建立主-辅结构的多机器人模型,利用改进的SP^2ATM算法建立未知环境的拓扑结构并增量式地创建地图.在此基础上,提出了融合尺度不变(SIFT)特征的分层拓扑地图结构,并结合迭代最近点算法来实现多机器人系统地图拼接.本文以RTM作为通讯平台,使系统具有较高的实时性、灵活性和鲁棒性.USARSim仿真平台与真实环境下的实验结果验证了所提方法的可行性与有效性. For large-scale unknown environments,a method of topological node matching based on visual feature is presented,and a local scan matching strategy is integrated to realize map merging for multi-robot system under RTM(robot technology middleware) framework.A main-auxiliary structure model of multiple robots is developed,and an improved SP-2ATM algorithm is adopted to incrementally constructing topological map in unknown environments.Based on this,the hierarchical topology structure including SIFT(scale-invariant feature transform) feature information is presented,which is combined with ICP(iterative closest point) algorithm to realize map merging of multi-robot systems.RTM is taken as communication platform to improve the realtime performance,flexibility and robustness of the system.Simulation on USARSim and experimental results in actual environments verify the effectiveness of the proposed method.
出处 《机器人》 EI CSCD 北大核心 2013年第3期292-298,共7页 Robot
基金 北京市自然科学基金重点资助项目(KZ201110005004) 国家自然科学基金资助项目(61175087 61105033) 国家敦育部留学回国人员科研启动基金资助项目
关键词 多机器人系统 机器人中间件技术 地图拼接 尺度不变特征 迭代最近点算法 multi-robot system RTM(robot technology middleware) map merging SIFT(scale-invariant feature transform) ICP(iterative closest point)
  • 相关文献

参考文献1

二级参考文献17

  • 1Smith R C, Cheeseman P. On the representation and estimation of spatial uncertainty. The International Journal of Robotics Research, 1986, 5(4): 56-68.
  • 2Bailey T, Durrant-Whyte H. Simultaneous localization and mapping: Part II. IEEE Robotics and Automation Magazine, 2006, 13(3): 108-117.
  • 3Thrun S, Liu Y F, Koller D, Ng A Y, Ghahramani Z, Durrant-Whyte H. Simultaneous localization and mapping with sparse extended information filters. The International Journal of Robotics Research, 2004, 23(7-8): 693-716.
  • 4Doucet A, de Freitas N, Murphy K P, Russell S J. Rao-Blackwellised particle filtering for dynamic Bayesian networks. In: Proceedings of the 16th Conference in Uncertainty in Artificial Intelligence. Stanford, USA: Morgan Kaufmann Publishers. 2000. 176-183.
  • 5Eliazar A, Parr R. DP-SLAM: fast, robust simultaneous localization and mapping without predetermined landmarks. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence. Acapulco, Mexico: Lawrence Erlbaum Associates, 2003. 1135-1142.
  • 6Hahnel D, Burgard D, Fox D, Thrun S. An efficient fast-SLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, USA: IEEE, 2003. 206 - 211.
  • 7Grisetti G, Stachniss C, Burgard W. Improved techniques for grid mapping with Rao-Blackwellized particle filters. IEEE Transactions on Robotics, 2007, 23(1): 34-46.
  • 8Censi A. An ICP variant using a point-to-line metric. In: Proceedings of the 2008 IEEE International Conference on Robotics and Automation. Pasadena, USA: IEEE, 2008. 19-25.
  • 9Montemerlo M, Thrun S, Koller D, Wegbreit B. Fast-SLAM: a factored solution to simultaneous localization and mapping. In: Proceedings of the AAAI National Conference on Artificial Intelligence. Edmonton, Canada: KFUPM ePrints. 2002. 593-598.
  • 10Besl P J, McKay N D. A method for registration of 3D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256.

共引文献32

同被引文献40

引证文献6

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部