期刊文献+

某类单叶调和函数的解析特征

On the analytic characteristic properties for one class of univalent harmonic functions
下载PDF
导出
摘要 证明了单位圆盘内的单叶调和函数的子类TS*H(λ1,λ2;α)为一族双向-Lipschitz函数,同时研究该调和函数类的模偏差估计、凸组合以及卷积,推广了Oztürk与Jahangiri等人的相应结果。 The modulus distortion estimate, convex combination and convolution for some subclass TS H*(λ1,λ2;α) of univalent harmonic functions in the unit disk are investigated,and we prove that TS H*(λ1,λ2;α) is a Bi - Lipschitz function class. Our results extend the corresponding ones by Ozttirk and Jahangiri.
出处 《贵州师范学院学报》 2013年第3期13-16,共4页 Journal of Guizhou Education University
关键词 单叶调和函数 模偏差 双向Lipschitz 卷积 univalent harmonic function modulus distortion bi - Lipschitz convolution
  • 相关文献

参考文献9

  • 1J. Clunie and T. Sheil - Small. Harmonic univalent func- tions[ J]. Ann. Acad. Sci. I Math, 1984,9A :3 - 25.
  • 2黄心中.给定复伸张单叶调和映照的面积偏差[J].华侨大学学报(自然科学版),2007,28(2):208-211. 被引量:6
  • 3吴瑞溢,黄心中.Salagean类单叶调和函数的特征[J].华侨大学学报(自然科学版),2008,29(2):308-311. 被引量:6
  • 4谢志春,黄心中.某些单叶调和函数类的解析特征[J].华侨大学学报(自然科学版),2009,30(6):704-708. 被引量:6
  • 5M. 0zttirk, S. Yalgin and M. Yamankaradeniz. A subclass of harmonic univalent functions with negative coefficients [ J ]. Appl. Math. Comput,2003,142:469 - 476.
  • 6M. 0ztttrk, S. Yalin and M. Yamankaradeniz. Convex subclass of harmonic starlike functions [ J ]. Appl. Math. Comput,2004,154:449 - 459.
  • 7J. M. Jahangiri and H. Silverman. Harmonic close - to - convex mappings[ J]. J. Appl. Math. and Stochastic Anal- ysis ,2002,15 ( 1 ) :23 - 28.
  • 8J. M. Jahangiri. Harmonic functions starlike in the unit disk[ J]. J. Math. Anal, 1999,235:470 - 477.
  • 9朱剑峰,黄心中.两类调和函数的拟共形性质[J].华侨大学学报(自然科学版),2011,32(6):705-709. 被引量:5

二级参考文献31

  • 1黄心中.给定复伸张单叶调和映照的面积偏差[J].华侨大学学报(自然科学版),2007,28(2):208-211. 被引量:6
  • 2CLUNIE J, SHEIL-SMALL T. Harmonic univalent functions[J]. Ann Acad Sci I Math, 1984,9A(1)3-25.
  • 3SILVERMAN H, SILVIA E M. Subclasses of harmonic univalent functions[J]. New Zeal J Math, 1999,28(2) :275- 284.
  • 4OZTURK M, YALGIN S, YAMANKARADENIZ M A subclass of harmonic univalent functions with negative coefficients[J]. Appl Math Comput, 2003,142(2/3) : 469-476.
  • 5OZTURK M, YALCIN S, YAMANKARADENIZ M. Convex subclass of harmonic starlike functions[J]. Appl Math Comput, 2004,154(2) : 449-459.
  • 6JAHANGIRI J M, SILVERMAN H. Harmonic close-to-convex mappings[J]. J Appl Math and Stochastic Analysis, 2002,15(1) :23-28.
  • 7JAHANGIRI J M. Harmonic functions starlike in the unit disk[J]. J Math Anal, 1999,235(2):470-477.
  • 8LEWY H. On the non-vanishing of the Jocobian in certain one-to-one mappings[J]. Uspekhi Mat Nauk, 1948,3 (2) : 216-219.
  • 9PAVLOVIC M. Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk[J]. Ann Acad Sci Fenn Math, 2002,27 : 365-372.
  • 10PARTYKA D, SAKAN K. On bi-Lipschitz type inequalitites for quasiconformal harmonic mappings[J]. Ann Acad Sci Fenn Math, 2007,32:579-594.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部