期刊文献+

一类分数阶Fokker-Planck方程的导出

Deriving the Fractional Fokker-Planck Equation
下载PDF
导出
摘要 从积分形式的主方程出发分别导出了常数外力场和非常数外力场中的分数阶Fokker-Planck方程,其可用来描述带有外力场的次扩散过程。 In this paper, we derive the fractional Fokker-Planck equation in the presence of an external field from the master equation in its integral form. It can describe sub-diffusion with an external field.
作者 毛志
出处 《毕节学院学报(综合版)》 2013年第4期60-64,共5页 Journal of Bijie University
基金 铜仁学院2011年科研启动基金自然科学类课题研究成果之一 项目编号:TS10021
关键词 分数阶Fokker-Planck方程 反常扩散 主方程 次扩散 Fractional Fokker-Planck Equation Anomalous Diffusion Master Equation Sub-diffusion
  • 相关文献

参考文献9

  • 1H. Risken. The Fokker-Planck equation: Methods of solution and applications[M]. Berlin: Springer, 1989.
  • 2R. Metzler, J. Klafter. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics [J]. J Phys, 2004, A37: R161.
  • 3R. Metzler, J. Klafter. The random walk's guide to anomalous diffusion: a fractional dynamics approach [J]. Physics Reports, 2000, 339: 3-22.
  • 4R. Metzler, J. Klafter. Anomalous transport in external fields: continuous time random walks and fractional diffusion equations extended [J]. Physics Review E, 1998, 58(2): 1621-1633.
  • 5E. Barkai, R. Metzler, J. Klafter. From continuous time random walks to the fractional Fokker-Planck equa- tion [J]. Physics Review E, 2000, 61(1): 132-138.
  • 6包景东.分数布朗运动和反常扩散[J].物理学进展,2005,25(4):359-367. 被引量:17
  • 7常福宣,陈进,黄薇.反常扩散与分数阶对流-扩散方程[J].物理学报,2005,54(3):1113-1117. 被引量:26
  • 8R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, P. Paradisi. Discrete random walk models for space-time fractional diffusion [J]. Chem. Phys., 2002, 284(1/2): 521-541.
  • 9Chen W. Time-space fabric underlying anomalous diffusion [J]. Chaos, Solitons & Fractals, 2006, 28(4): 923-929.

二级参考文献45

  • 1Metzler R and Klafter J 2000 Phys. Rep. 339 1.
  • 2Metzler R, Glockle W G and Nonnenmacher T F 1994 Physica A 211 13.
  • 3Giona M and Roman H E 1992 Physica A 185 87.
  • 4Giona M and Roman H E 1992 J. Phys. Math. Gen. 25 2093.
  • 5Roman H E and Giona M J 1992 Phys. Math. Gen. 25 2107.
  • 6Meeshaert M M, Benson D A and Baumer B 1998 Phys. Rev. E 59 5026.
  • 7Benson D A, Wheatcraft S W and Meeshaert M M 2000 Water Resour. Res. 36 1413.
  • 8amko S G, Kilbss A A and M&ichev O I 1993 Fractional Integrals and Derivatives, Theory and Applications (Amsterdam: Gordon and Breach).
  • 9Gorenflo R, Mainardi F, Moretti D, Pagnini G and Paradisi P 2002 Chem. Phys. 284 521.
  • 10Gorenflo R, Mainardi F, Moretti D, Pagnini G and Paradisi P 2002 Physica A 305 106.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部