期刊文献+

基于水平集方法和神经网络的人体睡姿识别 被引量:8

Recognizing for Sleep Posture Based on Level Set Method and Neural Network
下载PDF
导出
摘要 针对彩色图像提出了一种基于水平集方法和神经网络的人体睡姿识别方法,由目标分割,BP神经网络识别两部分组成。首先利用水平集方法分割出图像中人体所在区域,然后使用BP神经网络方法训练并识别人体睡姿,其中睡姿包括仰睡、俯睡、左侧睡和右侧睡四种。实验结果表明该方法能够适应较复杂背景的人体睡姿识别,既具有较强的鲁棒性,又能够达到实时检测的目的。 In this paper,a sleep posture recognition algorithm for color images based on level set method and neural network,which is composed of target segmentation and BP neural network verifying is presented.First,level set method is used for segmenting the body region,and then the BP neural network methods are used for recognizing sleep postures which is include supine,prone,left side and right side.Experimental results show that the proposed method can detect sleep postures from complex background,which not only have higher robustness,but also in real time.
出处 《工业控制计算机》 2013年第5期88-90,共3页 Industrial Control Computer
关键词 睡姿识别 水平集方法 BP神经网络 sleep posture recognition level set method BP neural network
  • 相关文献

参考文献9

  • 1Kim K,Medioni G G.Distributed visual processing for a home visual sensor network [A].ln=Proceedings of IEEE Workshop on Applications of Computer Vision[C].Copper Mountain,Col- orado, USA, 2008,1-6.
  • 2Park S,Trivedi M.Driver activity analysis for intelligent vehi- cles:issues and development framework[A].ln:Proceedings of IEEE IntellLgent Vehicles Symposium [C],Los Vegas,Nevada, USA, 2005: 644-649.
  • 3Liu C D.Chuug P C.Chung Y N.Human home behavior inter- pretation from video streams [A].ln=Proceedings of the 2004 IEEE International Conference QH Networking,Sensing&Con- trol[C] ,Taipei ,Taiwan, China.2004:192-197.
  • 4OsherS, Sethian J A. Fronts propagating with curvature de- pendent speed:algorithms based on Hamilton-Jacob i formu- lations[J].Journal of Computationa IPhysics, 1988,79(1 ): 12-49.
  • 5王植,贺赛先.一种基于Canny理论的自适应边缘检测方法[J].中国图象图形学报(A辑),2004,9(8):957-962. 被引量:214
  • 6刘喜英,吴淑泉,徐向民.基于改进分水岭算法的医学图像分割的研究[J].微电子技术,2003,31(4):39-42. 被引量:17
  • 7杨勇,马志明,徐春.LCV模型在医学图像分割中的应用[J].计算机工程,2010,36(10):184-186. 被引量:16
  • 8钱芸,张英杰.水平集的图像分割方法综述[J].中国图象图形学报,2008,13(1):7-13. 被引量:48
  • 9LIY,ATMOSUKARTO I,KOBASHIM.Object and event recogni- tionfor serial surveillance[J].Proceedings of the SPIECoference on Optics and Photonics in Global Homeland Security,2005, 4(5781 ): 139-149.

二级参考文献28

  • 1.MATLAB 6.0高级应用-图形图像处理[M].机械工业出版社,2001,5.1.
  • 2.MATLAB 6.0高级应用-图形图像处理[M].机械工业出版社,2001.5.1.
  • 3Kass M,Witkin A,Terzopoulos D.Snakes:Active Contour Models[J].International Journal of Computer Vision,1988,2(1):321-331.
  • 4Osher S,Sethian J A.Fronts Propagating with Curvature Dependent Speed:Algorithm Based Hamilton-Jacobi Formulation[J].Journal of Computational Physics,1988,79(1):12-49.
  • 5Caselles V,Kimmel R,Sapiro G.Geodesic Active Contours[J].International Journal of Computer Vision,1997,22(3):61-79.
  • 6Shi Y,Karl W C.Real-time Tracking Using Level Sets[C]//Proc.of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego,CA,USA:[s.n.],2005:34-41.
  • 7Li Chunming,Xu Chenyang,Gui Changfeng.Level Set Evolution Without Re-initialization:A New Variational Formulation[C]//Proc.of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego,CA,USA:[s.n.],2005:430-436.
  • 8Chan T,Vese L.Active Contours Without Edges[J].IEEE Trans.on Imag.Proc.,2001,10(2):266-277.
  • 9Vese L,Chan T.A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model[J].International Journal of Computer Vision,2002,50(1):271-293.
  • 10Li Chunming,Kao C Y,Gore J C,et al.Implicit Active Contours Driven by Local Binary Fitting Energy[C]//Proc.of IEEE Conference on Computer Vision and Pattern Recognition.Minnesota,USA:[s.n.],2007:1-7.

共引文献291

同被引文献31

引证文献8

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部