摘要
介绍数据挖掘和机器学习基础知识,通过使用统计分类算法:分类和回归决策树、朴素贝叶斯分类器、神经网络、支持向量机,对UCI数据库上的花卉数据集进行分类,得到各种算法的分类性能评价指标并详细分析算法影响分类准确度的原因。
Introduces the basis of data mining and machine learning. The iris data set taken from the UCI machine learning database are classified by several commonly used algorithm, including classi- fication and regression tree (CART), naive bayes classifier, neural network and support vector machines (SVM). Carries out performance evaluation of the classification algorithms and analy- ses the effects of algorithms on classification accuracy in details.
出处
《现代计算机》
2013年第9期21-24,共4页
Modern Computer
关键词
机器学习
决策树
朴素贝叶斯
神经网络
Machine Learning
Decision Tree
Naive Bayes
Neural Network(NN)