期刊文献+

非线性规划的遗传算法在多峰函数优化中的应用 被引量:8

Genetic algorithms combined with nonlinear programming for multimodal function optimization
下载PDF
导出
摘要 对于函数优化问题,遗传算法具有较强的全局搜索能力,但其局部搜索能力相对较弱,一般只能搜索到问题的次优解,特别是函数具有多个峰值时,遗传算法易陷入局部解,而采用梯度下降方法寻优,非线性规划具有很强的局部搜索能力,但全局搜索能力较弱,所以研究通过结合两种算法的优点,利用遗传算法实施全局搜索和非线性规划实施局部搜索,以得到函数优化问题的全局最优解.通过测试函数证明,结合非线性规划后,遗传算法不仅能解决多峰函数寻优过程中易陷入局部最优的问题,而且具有很高的寻优效率,取得满意的结果. The genetic algorithm has strong global searching ability, but its local searching ability is weak. Generally, it could only reach the second-best solution of the function optimization problem, not the optimal one. When the function has multiple peaks, the genetic algorithm is easier to fall into the local minimum, and can not find the global minimum. With the gradient descent method, nonlinear programming has strong local searching ability for the function optimization problem. Therefore, this paper takes the advantage of genetic algorithm and nonlinear programming for multimodal optimization. On one hand, it uses genetic algorithm for global optimization, and on the other hand, it employs nonlinear programming for local optimization. The experimental results show that the method can not only solve the problem that the multi-modal function optimization would easily fall into the local minimum, but also have high iterative optimization efficiency, and could obtain satisfactory results.
作者 覃柏英
出处 《广西工学院学报》 CAS 2013年第2期25-31,共7页 Journal of Guangxi University of Technology
基金 广西自然科学基金项目(2012GXNSFAA053208) 广西教育厅科研项目(200103YB105) 广西工学院博士科研基金项目(院科博1005)资助
关键词 遗传算法 非线性规划 多峰函数优化 genetic algorithm nonlinear programming function muhimodal optimization
  • 相关文献

参考文献13

  • 1Li Minqiang, Lin Dan, Kou Jisong. A hybrid niching PSO enhanced with recombination-replacement crowding strategy for multimodal function optimization[J].Applied Soft Computing, 2012, 12(3) : 975-987.
  • 2薛文涛,吴晓蓓,单梁.多峰函数优化的免疫混沌网络算法[J].系统仿真学报,2010,22(4):915-920. 被引量:9
  • 3Xu Qingzheng,Wang Lei,Si Jing. Predication based immune network for multimodal function optimization [J]. Engineering Applications of Artificial Intelligence, 2010, 23 (4) : 495-504.
  • 4Ling Qing, Wu Gang, Yang Zaiyue, et al. Crowding clustering genetic algorithm for muhimodal function optimization [J]. Applied Soft Computing, 2008, 8(1 ) : 88-95.
  • 5Kao YiTung, Erwie Zahara. A hybrid genetic algorithm and particle swarm optimization for multimodal functions [J]. Applied Soft Computing, 2008, 8(2): 849-857.
  • 6Wei Lingyun,Zhao Mei. A niche hybrid genetic algorithm for global optimization of continuous muhimodal functions [J]. Applied Mathematics and Comtmtation. 2005. 160(3) : 649-661.
  • 7张琳,郑忠,高小强.多峰函数优化的混合遗传算法[J].重庆大学学报(自然科学版),2005,28(7):51-54. 被引量:10
  • 8Yong Liang, Leung Kwong-Sak. Genetic Algorithm with adaptive elitist-population strategies for muhimodal function optimization [J ]. Applied Soft Computing, 2011, 11(2) : 2017-2034.
  • 9韦振中,黄廷磊.基于支持向量机和遗传算法的特征选择[J].广西工学院学报,2006,17(2):18-21. 被引量:12
  • 10姜阳,孔峰.基于MATLAB遗传算法工具箱的控制系统设计仿真[J].广西工学院学报,2001,12(4):6-9. 被引量:14

二级参考文献29

  • 1谭竹梅,余晓峰,郭观七.排挤小生态遗传算法的改进方法[J].控制理论与应用,2004,21(4):651-654. 被引量:6
  • 2王向军,向东,蒋涛,林春生,龚沈光,方兴.一种双种群进化规划算法[J].计算机学报,2006,29(5):835-840. 被引量:24
  • 3谭光兴,毛宗源,何元烈.一种基于抗体网络的免疫算法[J].计算机工程与设计,2007,28(5):1104-1107. 被引量:2
  • 4刘屿,田联房,毛宗源.一种新型人工免疫算法的PID自整定研究[J].计算机应用研究,2007,24(4):83-85. 被引量:6
  • 5周明 孙树栋.遗传算法原理及应用[M].西安:西安交通大学出版社,2000..
  • 6Goldberg D E, Richardson J. Genetic algorithms with sharing for multimodal function optimization [C]//Proc 2nd International Conf on Genetic Algorithms. N J, USA: Lawrence Erlbaum, 1987: 41-49. Mahfoud S W. Crowding and preselection revisited [C]// Parallel Problem.
  • 7Mahfoud S W. Crowding and preselection revisited [C]// Parallel Problem Solving from Nature. Amsterdam, The Netherlands: Elsevier, 1992: 27-36.
  • 8Li Jian-Ping, Balazs M E, Parks G T. A species conserving genetic algorithm for multimodal function optimization [J]. Evolutionary Computation (S1063-6560), 2002, 10(3): 207-234.
  • 9De Castro L N, Von Zuben F J. Learning and optimization using the clonal selection principle [J]. IEEE Trans on evolutionary computation (S 1089-778X), 2002, 6(3): 239-251.
  • 10Seo J H, Im C H, Heo C G. Multimodal function optimization based on particle swarm optimization [J]. IEEE Trans on Magnetics (S0018-9464), 2006, 42(4): 1095-1098.

共引文献69

同被引文献78

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部