期刊文献+

引入二代小波的自适应BP神经网络局部放电故障识别 被引量:7

Partial Discharge Fault Identification by Using Adaptive BP Neural Network Based on Second Generation Wavelet
原文传递
导出
摘要 将二代小波与神经网络相结合进行局部放电故障分类。基于二代小波与信息熵理论,提取放电信号,以小波能谱熵与系数熵作为特征量。将提取的特征向量输入神经网络进行训练,训练时通过改进共轭梯度法自适应调整误差,得到最优训练网络。采用该文算法、经典神经网络以及小波神经网络,分别对放电模型产生的3种放电类型进行识别测试的结果表明:该文方法在识别准确率以及算法执行效率上,均优于经典神经网络以及小波神经网络。 Second generation wavelet (SGWT) and adaptive BP neural network were comolneo to classify partial discharge fault. Partial discharges (PD) signal was recognized based on SGWT and information entropy theory. Wavelet energy entropy and coefficient entropy were taken as characteristic quantity, and input into neural network for training. In the training process, the neural network could adaptively adjust error to obtain the optimal training network by using the improved conjugate gradient methods. Finally, the comparison between the proposed algorithm, classic neural network and wavelet neural network was carried out on the recognition test of three kings of PDs caused by discharge model, whose results showed that the recognition accuracy and execution efficiency of the proposed algorithm were better that those of classic neural network and wavelet neural network.
出处 《电力建设》 2013年第6期87-91,共5页 Electric Power Construction
基金 南方电网公司科技项目(K-GX2012-028 K-GX2011-013)
关键词 二代小波 神经网络 局部放电 小波能谱熵 系数熵 共轭梯度 second generation wavelet (SGWT) neural network partial discharge wavelet energy entropy coefficient entropy conjugate gradient
  • 相关文献

参考文献14

二级参考文献81

共引文献505

同被引文献75

  • 1程相杰,高沁翔.模糊神经网络在变压器油中溶解气体故障诊断中的应用[J].电气技术,2007,8(11):58-59. 被引量:2
  • 2陈波,郭壮志.基于优化平滑因子σ的概率神经网络的变压器故障诊断方法研究[J].现代电力,2007,24(2):44-47. 被引量:18
  • 3李剑,宁佳欣,金卓睿,王有元,李溟.变压器局部放电在线监测超高频Hilbert分形天线研究[J].电力自动化设备,2007,27(6):31-35. 被引量:18
  • 4Rothenhagen K, Fuchs F W. Performance of diagnosis methods for IGBT open circuit faults in voltage source ac- tive rectifiers [ C]. Germany: IEEE 35th Annual PowerElectronics Specialists Conference, 2004:4348 -4354.
  • 5Sleszynski W, Nieznanski J, Cichowski A. Open-tran- sistor fault diagnostics in voltage-source inverters by analy- zing the load currents [ J]. IEEE Transactions on Indus- trial Electronics, 2009, 56 ( 11 ) : 4681 - 4688.
  • 6CHO S I. On-line PD (partial discharge) monitoring of power system components[D]. Finland: Aalto University, 2011.
  • 7MASHESWARI R V, SUBBURAJ R VIGNESHWARAN B, et al. Non linear support vector machine based partial discharge patterns recognition using fractal features[J]. Journal of Intelligent and Fuzzy Systems, 2014, 27(5):2649-2664.
  • 8ZHANG Hao, BLACKBURN T R, PHUNG B T, et al. A novel wavelet transform technique for on-line partial discharge measurements part 1: WT de-nosing algorithms[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(1): 3-14.
  • 9SAHOO N C, SALAMA M M A, BARTNIKAS R. Trends in partial discharge pattern classification: a survey[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(2): 248-264.
  • 10符玲,何正友,麦瑞坤,钱清泉.近似熵算法在电力系统故障信号分析中的应用[J].中国电机工程学报,2008,28(28):68-73. 被引量:47

引证文献7

二级引证文献111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部