1Vapid V. The nature of statistical learning theory [M]. NewYork: Springer, 1995.
2Vapid V. Statistical learning theory[M]. New York: JohnWiley, 1998.
3Smits G F, Jordaan E M. Improved SVM regression usingmixtures of kernels[C]//IEEE Proceedings of the 2002International Joint Conference on Neural Networks, 2002,3: 2785-2790.
4Rakotomamonjy A, Bach F, Canu S, et al. SimpleMKL [J]. Journal of Machine Learning Research,2008,9 (11): 2491-2521.
7Hoi land J H. Adaptation in natural and artificial systems.The University of Michigan Press, Ann Arbor, MI, 1975.
8De Jong K A. An Analysis of the Behaviour of a class ofgenetic adaptive systems. phD Thesis, Depart of Computer andCommunication Sciences, University of Michigan, Ann Arbor, 1975.
2Vapnik V N . The Nature of Statistical Learning Theory [M]. New York: Springer-Verlag, 1995.
3Liejun W, Xizhong Q,Taiyi Z, Facial expression recognition using improved Support Vector Machine by modifying kernels [ J]. Information Technology Journal, 2009, 8(4) :595 -599.
4Stairs G F, Jordaan E M. Improved SVM regression using mixtures of kernels [ C ]//IEEE Proceedings of the 2002 International Joint Conference,2002,3:2785 - 2790.
5Matyens D, Baesens B, Van Gestel T. Decompositional rule extraction from Support Vector Machines by active learning[J]. IEEE Transactions on Knowledg And Data Engineering,2009,21 ( 2 ) : 178 - 191.
6Vapnik V N. An overview of statistical learning theory [ J ]. IEEE Transaction on Neural Networks, 1999,10 ( 5 ) :988 - 999.
7Yang J,Zhang D, Yang Jingyu, et al. Two - dimensional PCA:a new approach to appearance - based face representation and recognition [ J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2004,26(1 ) :131 - 137.
8Kotsia I,Nikolaidis N,Pitas I. Facial expression recognition in videos using a novel Multi - Class Support Vector Machines variant [ C ]// IEEE International Conference on Acoustics, Speech and Siqnal Processing, 2007,2:585 - 588.
9Lanckriet G, Cristianini N, Ghaoui L, et al. Learning the kernel matrix with semi-definite programming[J]. Journal of Machine Learning Research, 2004,5 : 27- 72.
10Bach F, Lanckriet G, Jordan M. Multiple Kernel Learning, Conic Duality and the SMO algorithm[C]// Proceedings of the 21st International Conference on Machine Learning (ICML 2004). New York: ACM, 2004:41-48.