期刊文献+

基于小生境演化算法的混合核函数SVM参数寻优算法

下载PDF
导出
摘要 提出了一种基于小生境演化算法的混合核函数SVM参数寻优算法,该算法定义随机交叉变异模板决定实数编码小生境演化算法的交叉变异位,利用该小生境演化算法对混合核函数的SVM参数寻优,最终得到性能良好的SVM分类器。仿真实验表明,通过使用该算法对UCI数据集分类识别,能够找到SVM分类器的最优参数,混合核函数SVM比单一核函数SVM算法具有更好的分类性能。
作者 李凯
出处 《中国电子商务》 2013年第10期82-85,共4页 E-commerce in China
  • 相关文献

参考文献8

  • 1Vapid V. The nature of statistical learning theory [M]. NewYork: Springer, 1995.
  • 2Vapid V. Statistical learning theory[M]. New York: JohnWiley, 1998.
  • 3Smits G F, Jordaan E M. Improved SVM regression usingmixtures of kernels[C]//IEEE Proceedings of the 2002International Joint Conference on Neural Networks, 2002,3: 2785-2790.
  • 4Rakotomamonjy A, Bach F, Canu S, et al. SimpleMKL [J]. Journal of Machine Learning Research,2008,9 (11): 2491-2521.
  • 5任彧,梅盛鑫.基于混合核函数支持向量机和遗传算法的人脸识别[J].计算机应用与软件,2011,28(4):260-263. 被引量:6
  • 6万源,童恒庆,朱映映.基于遗传算法的多核支持向量机的参数优化[J].武汉大学学报(理学版),2012,58(3):255-259. 被引量:18
  • 7Hoi land J H. Adaptation in natural and artificial systems.The University of Michigan Press, Ann Arbor, MI, 1975.
  • 8De Jong K A. An Analysis of the Behaviour of a class ofgenetic adaptive systems. phD Thesis, Depart of Computer andCommunication Sciences, University of Michigan, Ann Arbor, 1975.

二级参考文献21

  • 1潘伟,刁华宗,井元伟.一种改进的实数自适应遗传算法[J].控制与决策,2006,21(7):792-795. 被引量:53
  • 2Vapnik V N . The Nature of Statistical Learning Theory [M]. New York: Springer-Verlag, 1995.
  • 3Liejun W, Xizhong Q,Taiyi Z, Facial expression recognition using improved Support Vector Machine by modifying kernels [ J]. Information Technology Journal, 2009, 8(4) :595 -599.
  • 4Stairs G F, Jordaan E M. Improved SVM regression using mixtures of kernels [ C ]//IEEE Proceedings of the 2002 International Joint Conference,2002,3:2785 - 2790.
  • 5Matyens D, Baesens B, Van Gestel T. Decompositional rule extraction from Support Vector Machines by active learning[J]. IEEE Transactions on Knowledg And Data Engineering,2009,21 ( 2 ) : 178 - 191.
  • 6Vapnik V N. An overview of statistical learning theory [ J ]. IEEE Transaction on Neural Networks, 1999,10 ( 5 ) :988 - 999.
  • 7Yang J,Zhang D, Yang Jingyu, et al. Two - dimensional PCA:a new approach to appearance - based face representation and recognition [ J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2004,26(1 ) :131 - 137.
  • 8Kotsia I,Nikolaidis N,Pitas I. Facial expression recognition in videos using a novel Multi - Class Support Vector Machines variant [ C ]// IEEE International Conference on Acoustics, Speech and Siqnal Processing, 2007,2:585 - 588.
  • 9Lanckriet G, Cristianini N, Ghaoui L, et al. Learning the kernel matrix with semi-definite programming[J]. Journal of Machine Learning Research, 2004,5 : 27- 72.
  • 10Bach F, Lanckriet G, Jordan M. Multiple Kernel Learning, Conic Duality and the SMO algorithm[C]// Proceedings of the 21st International Conference on Machine Learning (ICML 2004). New York: ACM, 2004:41-48.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部