期刊文献+

小行星热模型研究现状 被引量:5

The Review of Thermal Models for Asteroids
下载PDF
导出
摘要 从基本物理出发,详细地介绍在小行星热环境研究中常用的几个热模型,并结合观测论述其具体科学应用。一般来说,小行星热模型可以分为两大类:简化模型和热物理模型。简化模型主要用来估计小行星的反照率和直径;热物理模型则是用详细的形状模型,结合经典的热物理学规律来尽可能真实地模拟小行星表层的复杂热环境,可以较真实地模拟出小行星表层各局部区域的热环境状态,从而为研究小行星的热演化历史及与其相关的Yarkovsky和YORP效应等提供理论依据。 In this paper, several typical thermal models for asteroids, which are widely applied in the asteroid science in recent years, are extensively reviewed. The fundamental physics and application of these models are extensively discussed. In general, the thermal models of asteroids can be divided into two categories: the Simplified Model and Thermal-Physical Model, the former is always used to estimate the asteroid's albedo and diameter, while the latter adopts detailed shape model and classic thermal laws of physics as realistically as possible to simulate complex thermal environment of the asteroid surface. Through the numerical process of thermal model, the temperature distribution of the asteroid surface can be obtained and its thermal infrared radiation can be calculated, which can be used to fit the mid-IR observations of the asteroid so as to determine its effective diameter, albedo, and thermal inertia. Furthermore, an appropriate simulation of an asteroid's surface thermal environment from a thermal model does great benefits to study the thermal history of the asteroid and other related procedures such as Yarkovsky and YORP effects.
出处 《天文学进展》 CSCD 北大核心 2013年第2期185-201,共17页 Progress In Astronomy
基金 国家自然科学基金(11273068 10973044 10833001 10933004) 中国科学院新兴与交叉学科布局试点项目(KJZD-EW-Z001) 江苏省自然科学基金(BK2009341) 紫金山天文台小行星基金会资助课题
关键词 小行星 热模型 热惯量 YORP效应 asteroids thermal model thermal inertia YORP effect
  • 相关文献

参考文献41

  • 1Hansen O L. Icarus, 1977, 31:4.
  • 2Fowler J W, Chillemi J R. The IRAS Minor Planet Survey, 1992:17.
  • 3Bowell E, Hapke B, Domingue D, et al. Asteroids Ⅱ, 1989:524.
  • 4Lebofsky L A, Sykes M V, et al. Icarus, 1986, 68:239.
  • 5Mellon M T, Jakosky B M, Kieffer H H, Christensen P R. Icarus, 2000, 148:437.
  • 6Delbo' M, Oro A, Harris A W, Mottola S, Muller M. Icarus, 2007, 190:236.
  • 7Lebofsky L A, and Spencer J R. Radiometry and thermal modeling of asteroid, 1989. Asteroids Ⅱ, 1989:128.
  • 8Harris A W. Icarus, 1998, 131:291.
  • 9Pettit E, Nicholson S B. APJ, 1930, 71:102.
  • 10Smith B G. J. Geophys. Res, 1967, 72:4059.

共引文献3

同被引文献24

  • 1Veverka J, Thomas P, Harch A, et al. NEAR's flyby of 253 Mathilde: Images of a C asteroid[J]. Science, 1997, 278(5346): 2109-2114.
  • 2Veverka J, Robinson M, Thomas P, et al. NEAR at Eros: Imaging and spectral results[J]. Science, 2000, 289(5487): 2088-2097.
  • 3NASAIJPL-Caltech/UCAL/MPSIDLRI1DA[EBIOL]. (2012-9-17) [2014- 7-20]. http:/ien.wikipedia.orgliki/File:Vesta full mosaic.jpg.
  • 4Sierks H, Lamy P, Barbieri C. hnages of asteroid 21 Lutetia: A remnant planetesimal from the early solar system[J]. Science, 2011, 334(6055): 487-490.
  • 5Fujiwara A, Kawaguchi J, Yeomans D K, et al. The rubble-pile asteroid itokawa as observed by Hayabusa[J]. Science, 2006, 312(5778): 1330- 1334.
  • 6Huang J C, Ji J H, Ye P J, et al. The Ginger-shaped asteroid 4179 Toutatis: New observations from a successful flyby of Chang'e- 2[J]. Scientific Reports, 2013, 3:3411-3416.
  • 7Lebofsky L A, Sykes M V, Tedesco E F, et al. A refined standard thermal model for asteroids based on observations of 1 Ceres and 2 Pallas[J]. Icarus, 1986, 68(2): 239-251.
  • 8Lebofsky L A, Spencer J R. Radiometry and thermal modeling of asteroid [C]//Asteroids Ⅱ. Tucson: University of Arizona Press, 1989, 128-147.
  • 9Harris A W. A thermal model for near-earth asteroids[J]. Icarus, 1998, 131(2): 291-301.
  • 10Delbo M, Harris A W. Physical properties of near Earth asteroids from thermal infrared observations and thermal modeling[J]. Meteoritics & Planetary Science, 2002, 37(12): 1929-1936.

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部