期刊文献+

水流对聚焦波特性影响的数值模拟 被引量:6

Numerical investigation of the current influence on the characteristics of focused waves
下载PDF
导出
摘要 为了研究水流对聚焦波浪特性的影响规律,利用势流理论建立了聚焦波和水流混合作用的完全非线性数值水槽模型,在时域内利用高阶边界元方法进行模拟,并采用混合欧拉-拉格朗日方法追踪流体瞬时水面.通过实时模拟造波板运动在均匀水流中产生聚焦波浪.通过对比发现,该数学模型可以准确模拟聚焦波浪的传播变形过程,并进一步研究了水流对聚焦波的影响,包括对聚焦波浪峰值、聚焦位置和聚焦时间的影响等. In order to investigate the influences of current on focused waves, a 2D fully nonlinear numerical wave tank model was developed for studying the interaction between focused waves and uniform water current based on the potential theory. The higher-order boundary element method (HOBEM) was used in the proposed model and the mixed Eulerian-Lagrangian approach was adopted to update the instantaneous free surface. The focused wave trains were numerically generated by a piston wavemaker on a uniform current. By contrast, the mathematical model is proved to be able to accurately simulate the deformation process of focused wave during propagation. Then the influ- ence of uniform currents on the properties of the focused waves, including maximum focused wave crest, shift of fo- calposition and focal time, were further examined.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2013年第5期555-561,共7页 Journal of Harbin Engineering University
基金 国家自然科学基金资助项目(51179028 51222902 51221961) 国家973计划基金资助项目(2011CB013703) 中央高校基本科研业务费专项基金资助项目(DUT13YA104)
关键词 聚焦波 波流混合作用 高阶边界元方法 focused waves wave-current interaction HOBEM numerical wave tank model uniform water current
  • 相关文献

参考文献20

  • 1KIM N, KIM C H. Investigation of a dynamic property of Draupner freak wave [ J ]. International Journal of Offshore an Polar Engineering, 2003, 13(1) :1-12.
  • 2李俊,陈刚,杨建民.深水畸形波的实验室物理模拟[J].中国海洋平台,2009,24(3):22-25. 被引量:7
  • 3BALDOCK T E, SWAN C, TAYLOR P H. A laboratory stud- y of nonlinear surface waves on water [ J ]. Phil Trans R Soc Lond A, 1996, 354(1707) :649-676.
  • 4TURNBULL M S, BORTHWICK A G L, EATOCK T R. Nu- merical wave tank based on a tr-transformed finite element in- viscid flow solver [ J ]. International Journal for Numerical Methods in Fluids, 2003, 42(6) :641-663.
  • 5JOHANNESSEN T B, SWAN C. Nonlinear transient water waves-part I : a numerical method of computation with com-parisons to 2-D laboratory data [ J ]. Applied Ocean Re search, 1997, 19(5):293-308.
  • 6YOUNG C C, WU C H, KUO J T, et al. A higher-order a- coordinate non-hydrostatic model for nonlinear surface waves [J]. Ocean Engineering, 2007, 34(10):1357-1370.
  • 7宁德志,滕斌,勾莹.深水中极限波峰下速度场快速算法[J].海洋工程,2009,27(3):62-65. 被引量:1
  • 8LAVRENOV I V, PORUBOV A V. Three reasons for freak wave generation in the non-uniform current [ J ]. European Journal of Mechanics-B/Fluid, 2006, 25(5):574-585.
  • 9GRUE J, PALM E. Wave radiation and wave diffraction from a submerged body in a uniform current [ J ]. Journal of Fluid Mechanics, 1985, 151(1) :257-278.
  • 10GRUE J, PALM E. Wave radiation and wave diffraction from a submerged body in a uniform current [ J ]. Journal of Fluid Mechanics, 1985, 151(1) :257-278.

二级参考文献18

  • 1芮光六,董艳秋,张智.畸形波的实验室模拟[J].中国海洋平台,2004,19(3):30-33. 被引量:7
  • 2Peter Kjeldsen.A sudden disaster-in extreme waves[A].Abstract for Rogue waves 2000 workshop,Brest,29-30 November.
  • 3David L Kriebe.Efficient simulation of extreme waves in a random sea[A].Abstract for Rogue waves 2000 workshop,2000.
  • 4Tomita H,Kawamura T.Statistical analysis and inference from the in-situ data of the sea of Japan with reference to abnormal and/or freak waves[J].Proceedings of the International Offshore and Polar Engineering Conference.Seattle,WA,USA,2000,v3:116-122.
  • 5Baldock T E, Swan C, Taylor P H. A laboratory study of nonlinear surface waves on water[J]. Phil. Trans. R. Soc. Lond. A, 1996, 354:649 - 676.
  • 6Johannessen T, Swan C. A laboratory study of the focusing of transient and directionally spread surface water waves[ J]. Prec. R. Soc. Land., 2001, A457:971-1006.
  • 7She K, Greated C A, Easson W J. Experimental study of three-dimensional wave kinematics[J]. Applied Ocean Research, 1997, 19: 329 - 343.
  • 8Grue J, Clamond D, Huseby M, et al. Kinematics of extreme waves in deep water [J]. Applied Ocean Research, 2003, 25:355- 366.
  • 9Fenton J D, Rienecker M M. A Fourier method for solving nonlinear water-wave problems: application to solitary-wave interactions[ J]. J. Fluid Mech., 1982, 118:411-443.
  • 10Johnnessen T B, Swan C. Nonlinear transient water waves-Part 1. A numerical method of computation with comparisons to 2-D laboratory data[J]. Appl. Ocean Res., 1997, 19:293-308.

共引文献6

同被引文献41

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部