期刊文献+

超临界CO_2中表面钝化Au纳米粒子的分子动力学模拟

Molecular dynamics simulation of passivated Au nanoparticles dispersed in supercritical CO_2
下载PDF
导出
摘要 通过分子动力学模拟方法研究了353.15 K下多个氟化的硫醇烷烃钝化的Au纳米粒子在超临界CO2中的分散行为。结果表明:在单分子自组装层的钝化下,Au纳米粒子在超临界CO2溶剂中可以得到稳定分散。通过对径向分布函数、有效平均力势能、渗透压第二维里系数等数据进行分析发现,在超临界流体中,自组装单分子保护层(SAM)的存在可以有效阻止纳米粒子间的团聚,增加溶剂密度和链长,可以提高纳米粒子之间的相互排斥作用,从而有利于纳米粒子的分散。 Molecular dynamics simulations were carried out to investigate the dispersion behavior of fluori- nated alkanethiols passivated gold nanoparticles in supercritical CO2 at 353.15 K. Results indicated that the gold nanoparticles passivated with self-assembled monolayer (SAM) could be stably dispersed in the supercritical dioxide solvent. By analyzing the radial distribution function, effective pair potential of mean force and osmotic second Virial coefficient, it was observed that in supercritical fluid, the existence of SAM could effectively prevent reunion between the nanopartieles. The increase of solvent density and chain length could improve the mutual repulsion interaction between nanoparticles, thus it was help for the dispersion of nanoparticles.
出处 《南京工业大学学报(自然科学版)》 CAS 北大核心 2013年第3期6-10,24,共6页 Journal of Nanjing Tech University(Natural Science Edition)
基金 国家自然科学基金(21176114 20976079) 江苏省自然科学基金(BK2009359)
关键词 AU纳米粒子 超临界CO2 分散 分子动力学模拟 gold nanoparticle supercritical CO2 dispersion molecular dynamics simulation
  • 相关文献

参考文献15

  • 1Zeng S W, Yong K T, Roy I, et al. A review on functionalized gold nanoparticles for biosensing applications[ J]. Plasmonics ,2011,6 (3) :491 -506.
  • 2Raigoza A F, Villalba D A, Kautz N A, et al. Structure and self- assembly of sequentially adsorbed coronene/octanethiol monolay- ers[ J]. Surf Sci ,2010,604(19/20) :1584 - 1590.
  • 3Dalvi V H, Srinivasan V, Rossky P J. Understanding the relative effectiveness of alkanethiol ligands in dispersing nanoparticles in supercritical carbon dioxide and ethane [ J ]. J Phys Chem C, 2010,114 (37) : 15562 - 15573.
  • 4Schatz G. Using theory and computation to model nanoscale proper- ties[J]. Proc Natl Acad Set USA,2007,104(17) :6885 -6892.
  • 5Liu J, Gao Y Y, Cao D P, et al. Nanopartiele dispersion and aggre- gation in polymer nanocomposites : insights from molecular dynam- ics simulation [ J]. Langmuir,2011,27 ( 12 ) :7926 - 7933.
  • 6Lin J Q,Zhang H W, Chen Z, et al. Simulation study of aggrega- tions of monolayer-protected gold nanopartieles in solvents [ J ]. J Phys C hem C,2011,115 ( 39 ) : 18991 - 18998.
  • 7Garzon I L, Miehaelian K, Behron M R, et al. Lowest energy struc- tures of gold nanoclusters[ J]. Phys Rev Lett,1998,81 (8) :1600 - 1603.
  • 8Yang Z,Yang X N,Xu Z J,et al. Molecular simulations of struc- tures and solvation free energies of passivated gold nanoparticles in supercritical CO2 [ J ]. J Chem Phys ,2010,133 (9) :094702.
  • 9Senapati S, Keiper J S, Desimone J M, et al. Structure of phos- phate fluorosurfactant based reverse micelles in supercritical car-bon dioxide [ J ]. Langmuir, 2002,18 ( 20 ) : 7371 - 7376.
  • 10Schapotschnikow P, Vlugt T J H. Soft hedgehogs on coarse car- pets : a molecular simulation study of capped nanocrystals [ J ]. J Phys Chem C,2010, 114 ( 6 ) :2531 - 2537.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部