期刊文献+

Au-Fe/NaY催化膜的制备及其在CO选择性氧化中的应用

Preparation of Au-Fe/NaY catalytic membranes and their application in preferential oxidation of CO(PROX-CO)
下载PDF
导出
摘要 以NaY分子筛膜为基体,采用离子交换法制备Au-Fe/NaY催化膜,研究Fe3+前驱体浓度对催化膜上Au负载量及其对CO选择性氧化催化性能的影响,同时考察反应温度、进料O2浓度对催化膜CO选择性氧化反应的影响。结果表明:随着Fe3+前驱体浓度的增加,Au的负载量增加,当Fe3+前驱体溶液浓度为5.0 mmol/L时,所制备的催化膜催化性能最好;催化膜在12 h的反应时间内具有稳定的催化活性;产物中n(CO)/n(H2)随反应温度的升高先降低后升高,在80℃达到最小,且随进料O2浓度的增加而降低。 Au-Fe/NaY catalytic membranes were prepared by an ion-exchange method using NaY zeolite membranes as supports. The effects of Fe3+ precursor concentration on the gold loading and the activity of catalytic membranes for preferential oxidation of CO (PROX-CO) were studied. The influences of the reaction temperature and O2 concentration in feed were also investigated. The results showed that gold load- ing increased with the increasing of Fe3+ precursor concentration. The highest catalytic activity was a- chieved on the Fe3+ precursor concentration of 5.0 mmol/L. Steady catalytic activity was observed over the catalytic membrane during 12 h reaction. The n(CO)/n(H2) in the products decreased firstly with the increasing of reaction temperature, and then increased subsequently, it had a minimum value at 80℃. Besides,the n(CO)/n(H2) decreased with the increasing of O2 concentration in feed.
出处 《南京工业大学学报(自然科学版)》 CAS 北大核心 2013年第3期36-40,共5页 Journal of Nanjing Tech University(Natural Science Edition)
基金 国家自然科学基金(21176117)
关键词 分子筛 催化膜 纳米Au CO选择性氧化 zeolite catalytic membrane nano-sized Au CO preferential oxidation
  • 相关文献

参考文献14

  • 1Kandoi S, Gokhale A A, Grabow L C, et al. Why Au and Cu are more selective than Pt for preferential oxidation of CO at low tem- perature [J]. Catalysis Letters,2004,93(1/2) :93 -100.
  • 2Eopez N, Janssens T V W, Clausen B S, et al. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxi- dation [ J]. Journal of Catalysis ,2004,223 ( 1 ) :232 - 235.
  • 3Jafari S, Asilian Mahabady H, Kazemian H. Gold-nano particles supported on Na-Y and H-Y types zeolites: activity and thermal stability for CO oxidation reaction [ J ]. Catalysis Letters, 2009, 128(1/2) :57 -63.
  • 4Chen J H, Lin J Nan, Kang Y M, et al. Preparation of nano-gold in zeolites for CO oxidation:effects of structures and number of ion exchange sites of zeolites [ J ]. Applied Catalysis A : General, 2005,291 (1/2) : 162 - 169.
  • 5Bogdanchikova N, Simakov A, Smolentseva E, et al. Stabilization of catalytically active gold species in Fe-modified zeolites [ J ]. Applied Surface Science ,2008,254 (13) :4075 -4083.
  • 6HorvOth D, Polisset-Thfoin M, Fraissard J, et al. Novel preparation method and characterization of Au-Fe/HY zeolite containing high- ly stable gold nanoparticles inside zeolite supercages [ J ]. Solid State Ionics,2001,141 - 142:153 - 156.
  • 7Bernardo P, Algieri C, Barbieri G, et al. Hydrogen purification from carbon monoxide by means of selective oxidation using zeo- lite catalytic membranes [ J ]. Separation and Purification Tech- nology ,2008,62 ( 3 ) :629 - 635.
  • 8朱自萍,刘艳梅,杨占照,顾学红,徐南平.Preferential Oxidation of CO in a Hydrogen-Rich Gas Through Au/NaY Catalytic Membranes[J].Tsinghua Science and Technology,2010,15(4):397-403. 被引量:2
  • 9Gu X H, Dang J H, Nenoff T M. Synthesis of defect-free FAU-type zeolite membranes and separation for dry and moist CO2/N2 mix- tures [ J ]. Industrial & Engineering Chemistry Research,2005,44 (4) :937 -944.
  • 10Sato K, Nishimura Y, Matsubayashi N, et al. Structural changes of Y zeolites during ion exchange treatment:effects of Si/A1 ratio of the starting NaY [ J ]. Microporous and Mesoporous Materials, 2003,59 ( 2/3 ) : 133 - 146.

二级参考文献17

  • 1Song C. Fuel processing for low-temperature and high-temperature fuel cells: Challenges and opportunities for sustainable development in the 21st century. Catalysis Today, 2002, 77(2): 17-49.
  • 2Park E D, Lee D, Lee H C. Recent progress in selective CO removal in a H2-rich stream. Catalysis Today, 2009, 139(4): 280-290.
  • 3Simakov A, Tuzovskaya I, Bogdanchikova N, et al. Influence of sodium on activation of gold species in Y-zeolites. Catalysis Communications, 2008, 9(6): 1277-1281.
  • 4Naknam P, Luengnaruemitchai A, Wongkasemjit S. Preferential CO oxidation over Au/ZnO and Au/ZnO-Fe/O3 catalysts prepared by photodeposition. International Journal of Hydrogen Energy, 2009, 34(24): 9838-9846.
  • 5Luengnaruemitchai A, Osuwan S, Gulari E. Selective catalytic oxidation of CO in the presence of H2 over gold catalyst. International Journal of Hydrogen Energy, 2004, 29(4): 429-435.
  • 6Russo N, Fino D, Saracco G, et al. Supported gold catalysts for CO oxidation. Catalysis Today, 2006, 117(1): 214-219.
  • 7Wang L, Liu Q, Huang X, et al. Gold nanoparticles supported on manganese oxides for low-temperature CO oxidation. Applied Catalysis B, 2009, 88(2): 204-212.
  • 8Konova P, Naydenov A, Tabakova T, et al. Deactivation of nanosize gold supported on zirconia in CO oxidation. Catalysis Communications, 2004, 5(9): 537-542.
  • 9Ribeiro N F P, Mendes F M T, Perez C A C, et al. Selective CO oxidation with nano gold particles-based catalysts over Al2O3 and ZrO2. Applied Catalysis A, 2008, 347(1): 62-71.
  • 10Yang Y, Sangeetha P, Chen Y. Au/TiO2 catalysts prepared by photo-deposition method for selective CO oxidation in H2 stream. International Journal of Hydrogen Energy, 2009, 8(11): 1702-1710.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部