期刊文献+

Dolomite apatite separation by amphoteric collector in presence of bacteria 被引量:1

Dolomite apatite separation by amphoteric collector in presence of bacteria
下载PDF
导出
摘要 Bioflotation represents one of the growing trends to enhance the selectivity of conventional flotation processes.It utilizes the micro-organisms to replace or to interact with the chemical reagents to increase the gap between surface properties of similar minerals and to enhance the separation selectivity.In this work,dolomite-phosphate separation was investigated using amphoteric collector (dodecyl-N-carboxyethyl-N-hyroxyethyl-imidazoline) in presence of bacteria.Two types of bacteria,Corynebacteriumdiphtheriae-intermedius (CDI),and Pseudomonas aeruginosa (PA),were used.The collector bacteria interaction was characterized by Fourier transform infra-red (FTIR),frothing height and Zeta potential.The results show that the collector bacteria interaction improves the flotation selectivity.Although,the PA positively affects the separation results,the CDI cannot lower the MgO to less than 1%.A phosphate content of 0.7% MgO and 31.77% P2O5 with a recovery of 68% at pH 11,3.0 kg/t amphoteric collector,4×107 cells of PA is obtained. Bioflotation represents one of the growing trends to enhance the selectivity of conventional flotation processes. It utilizes the micro-organisms to replace or to interact with the chemical reagents to increase the gap between surface properties of similar minerals and to enhance the separation selectivity. In this work, dolomite-phosphate separation was investigated using amphoteric collector (dodecyl-N-carboxyethyl-N-hyroxyethyl-imidazoline) in presence of bacteria. Two types of bacteria, Corynebacterium- diphtheriae-intermedius (CDI), and Pseudomonas aeruginosa (PA), were used. The collector-bacteria interaction was characterized by Fourier transform infra-red (FTIR), frothing height and Zeta potential. The results show that the collector-bacteria interaction improves the flotation selectivity. Although, the PA positively affects the separation results, the CDI cannot lower the MgO to less than 1%. A phosphate content of 0.7% MgO and 31.77% P205 with a recovery of 68% at pH 11, 3.0 kg/t amphoteric collector, 4× 10^7 cells of PA is obtained.
出处 《Journal of Central South University》 SCIE EI CAS 2013年第6期1645-1652,共8页 中南大学学报(英文版)
关键词 分离选择性 集电极 白云石 细菌 磷灰石 磷酸盐含量 铜绿假单胞菌 ZETA电位 dolomite phosphate amphoteric collector bacteria bio-flotation carbonate minerals
  • 相关文献

参考文献42

  • 1EL-MIDANY A.A. Separation of dolomite from phosphate rock by reactive flotation [D]. University of Florida, 2004: 1-129.
  • 2EL-SHALL H, ZHANG P, ABDEL KHALEK N, EL-MOFTY S. Beneficiation technology of phosphates: Challenges and solutions [J] Mineral and Metallurgical Processing, 2004, 21 (1): 17-26.
  • 3EL-SHALL H, ZHANG P, SNOW R. Comparative analysis of dolomite/francolite flotation techniques [J]. Minerals and Metallurgical processing, 1996, 8(3): 135- 140.
  • 4SOMASUNDARAN P, REN Y, RAO M Y. Applications of biological processes in mineral processing [J]. Colloids and Surfaces, 1998, 133(1): 13-23.
  • 5REDDY R G, IMBRIE W P, QUENEAU P B. Residues and effluents: Processing and environmental considerations [M]. Pennsylvania (PA) USA: The Minerals, Metals and Materials Society, 1991.
  • 6SMITH R W, MISRA M. Recent developments in the bioprocessing of minerals [J]. Mineral Processing and Extractive Metallurgy Review, 1993, 12(1): 37-60.
  • 7DUGAN P R. The function of microbial polysaccharides in biofloeeulation and biosorption of metal ions [C]// ATTIA Y A. Floeeulation in Biotechnology and Separation Systems. San Francisco: Elsevier, 1987: 337-350.
  • 8RAO M K Y, NATARAJAN K A, SOMASUNDARAN E Effect of bacterial conditioning of sphalerite and galena with Thiobaeillus ferrooxidans on their flotability [C]// Engineering Foundation Conference, Santa Barbara, California: Springer, 1991 : 105-120.
  • 9SADOWSKI Z, GOLAB Z. Biomodification of mineral surface properties by Aspergillus niger [C]// SM1TH R W, MISRA M. Engineering Foundation Conference, Santa Barbara, California. Mineral Bioprocessing, 1991:81- 90.
  • 10RAO M K Y, NATARAJAN K A, SOMASUNDARAN P. Effect of biotreatment with Thiobacillus ferrooxidans on the floatability of sphalerite and galena [J]. Minerals and Metallurgical Processing, 1992, 9(4): 95- 100.

二级参考文献23

  • 1de SOUZA A D, PINA P S, LEAO V A. Bioleaching and chemical leaching as an integrated process in the zinc industry [J]. Minerals Engineering, 2007, 20(6): 591-599.
  • 2HOANG J, REUTER M A, MATUSEWICZ R, HUGHES S, PIRET N. Top submerged lance direct zinc smelting [J]. Minerals Engineering, 2009, 22 (9/10) :742-751.
  • 3RODRIGUEZ Y, BALLESTER A, BLAZQUEZ M, GONZALEZ F, MUNOZ J. New information on the sphalerite bioleaching mechanism at low and high temperature [J]. Hydrometallurgy, 2003, 71(1/2): 57-66.
  • 4FOWLER T, CRUNDWELL F. Leaching of zinc sulfide by Thiobacillus ferrooxidans: Experiments with a controlled redox potential indicate no direct bacterial mechanism [J]. Applied and Environmental Microbiology, 1998, 64(10): 3570-3575.
  • 5XIA Lehxian, LIU Jian-she, XIAO Li, ZENG Jia, LI Ban-mei, GENG Mei-mei, QIU Guan-zhou. Single and cooperative bioleaching of sphalerite by two kinds of bacteria-Acidithiobacillus ferriooxidans and Acidithiobacillus thiooxidans [J]. Transactions of the Nonferrous Metals Society of China, 2008, 18(1): 190-195.
  • 6P1NA P, LEAO V, SILVA C, DAMAN D, FRENAY J. The effect of ferrous and ferric iron on sphalerite bioleaching with Acidithiobacillus sp [J]. Minerals Engineering, 2005, 18(5): 549-551.
  • 7MOUSAVI S, JAFARI A, YAGHMAEI S, VOSSOUGHI M, ROOSTAAZAD R. Bioleaching of low-grade sphalerite using a column reactor [J]. Hydrometallurgy, 2006, 82(1/2): 75-82.
  • 8MOUSAVI S, YAGHMAEI S, VOSSOUGHI M, JAFARI A, ROOSTAAZAD R. Zinc extraction from Iranian low-grade complex zinc-lead ore by two native microorganisms: Acidithiobacillus ferrooxidans and sulfobacillus [J]. International Journal of Mineral Processing, 2006, 80(2/3/4): 238-243.
  • 9ROHWERDER T, GEHRKE T, K1NZLER K, SAND W. Bioleaching review part A [J]. Applied Microbiology and Biotechnology, 2003, 63(3): 239-248.
  • 10da SILVA G. Relative importance of diffusion and reaction control during the bacterial and ferric sulphate leaching of zinc sulphide [J]. Hydrometallurgy, 2004, 73 (3/4): 313-324.

共引文献3

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部