摘要
针对网络控制系统中随机时延很难精确预测的问题,首次将核主成分分析(kernel principal compo-nent analysis,KPCA)与最小二乘支持向量机(least squares support vector machine,LSSVM)结合对随机时延进行预测,KPCA对输入随机时延序列降维,消除重复性与噪声,减少LSSVM的运算量,降维后的时延序列通过LSSVM算法预测时延值。仿真结果表明,基于KPCA与LSSVM的时延预测方法的预测精度高于其他的预测方法。
The random delay of networked control system is difficult to predict accurately. Firstly the kernel prin- cipal component analysis (KPCA) and the least squares support vector machine (LSSVM) algorithm are combined to predict the random time-delay. The KPCA can reduce dimensionality of input random time-delay sequence, eliminate the noise and interference and reduce the amount of computation of the LSSVM algorithm. The time-delay is predicted by the LSSVM algorithm through the time-delay sequence after dimensionality reduction. The simulation results show that the prediction accuracy of the time-delay prediction based on the KPCA and LSSVM algorithm is higher than the other prediction methods.
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2013年第6期1281-1285,共5页
Systems Engineering and Electronics
基金
国家自然科学基金(61034005)资助课题
关键词
网络控制系统
时延预测
核主成分分析
最小二乘支持向量机
networked control system (NCS)
time-delay prediction
kernel principal component analysis (KPCA)
least squares support vector machine (LSSVM)