期刊文献+

基于纹理信息的森林类型遥感识别技术 被引量:5

Remote Sensing Identification on Forest Types Based on Texture Information
下载PDF
导出
摘要 为提高大区域TM影像对针阔混交林的识别精度,充分考虑遥感影像像元值的随机性和空间性,以盘古林场有林地TM遥感影像为例,结合地统计学知识,利用变异函数计算图像纹理信息,分析了影像纹理信息提取的重要因子,确定选取绝对变差函数为计算方法,以9×9像元为窗口,4像元为步长,计算方向为全方向对盘古林场有林地部分提取纹理信息并与原始光谱信息及归一化植被指数相结合,采用经典分类器最大似然法对影像进行分类。结果表明,辅以纹理信息的最大似然法分类精度为85.333 3%,Kappa指数为0.78,达到了区别针阔混交林的目的。 The research was conducted to improve the classification precision of coniferous, broadleaf and conifer-broadleaf mixed forest by TM images for large areas by using geostatistics considering the randomness and spatial distribution of the pixel values of the TM data. Taking the Pangu forest farm as the research region, the texture information of TM images were calculated using semi-covariance functions with a window of 9×9 pixels and 4 pixels step size for all directions. The absolute semi-covariance was selected through analyzing the factors affecting the texture information. The forest classification results were obtained by the maximum likelihood method with the texture information in the combination of the original spectral information and normalized differential vegetation index (NDVI). The accuracy of identifying forest type by the maximum likelihood method with the texture information is 85. 333 3% , and the Kappa coefficient is 0.78.
机构地区 东北林业大学
出处 《东北林业大学学报》 CAS CSCD 北大核心 2013年第6期50-54,60,共6页 Journal of Northeast Forestry University
基金 国家高技术研究发展计划(2012AA102001) 国防科工局专项(E0305/1112/01/01)
关键词 纹理信息 变差函数 遥感分类 Texture information Semi-covariance function Classification of remote sensing
  • 相关文献

参考文献10

  • 1梅安新,秦其明,刘慧平,等.遥感尊论[M].北京:高等教育出版社.2001.
  • 2Can" J R. Application of the semi-variongram texture classifier (STC) for vegetation discrimination using SIRB data the guiana shield, North Western Brazil [ J ]. Remote Sensing Reviews, 1994, 10 : 155-168.
  • 3Miranda F P. The Semi-variongram in comparison to the occur- rence matrix for classification of image texture[ J]. IEEE Transac- tion on Geoscience and Remote Sensing, 1998,36:1945-1952.
  • 4李培军,李争晓.三种地统计学图像纹理用于遥感图像分类的比较[J].地理与地理信息科学,2003,19(4):89-92. 被引量:11
  • 5F Paul, C Huggel, A Kaab. Combining satellite multispectral im- age data and a digital elevation model for mapping debris-covered glaciers [ J ]. Remote Sensing Environt, 2009,112 ( 5 ) : 106-121.
  • 6Curran P J. The semivariogram in remote sensing: an introduction [ J ]. Remote Sensing of Environment, 1988,24 ( 3 ) : 493 - 507.
  • 7Atkinson P M, Lewis P. Geostatistical classification for remote sensing: an introduction[ J ]. Computers and Geosciences,2000, 26:361-371.
  • 8曲海红,张东升.二类调查中树种组成与优势树种(组)的逻辑对应关系概述[J].林业勘查设计,2008(3):29-29. 被引量:1
  • 9RouseJ W, Haas R H, Schell J A. Monitoring vegetation systems in the Great Plains with ERTS [ J ]. In Proceedings of the Third ERTS Symposium, 1973 ( 1 ) :309-317.
  • 10Huete A R. A Soil-Adjusted Vegetation Index (SAVI)[J]. Re- mote Sensing of Environment, 1988,25:295-309.

二级参考文献19

  • 1Miranda F P, Carr J P. Application of the sanivariogram textural classifier (SIC) for vegetation discrimination using SIR- B data of the Guiana Shield, northwestern Brazil [J ]. Remote Sensing Reviews, 1994, 10: 155-168.
  • 2Chica - Olmo M, Arbarca - Hernandez F. Carnputing geostatistical image texture for remotely sensed data classification [J ]. Computers & Geosciences, 2000, 26(4) :373 - 383.
  • 3Berbercglu S, Lloyd C D, Atkinson P M, et al. The integration of spectral and textural information using neural networks for land cover mapping in the Mediterranean [ J ]. Computers & Geosciences, 2000, 26 (4): 385- 396.
  • 4Carr J R, Miranda F P. The sanivariogram in comparison to the co- occurrence matrix for classification of image texture [ J ].IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(6) : 1945 - 1952.
  • 5Lark R M. Geostatistieal description of texture on an aerial photograph for discriminating classes of land cover [J]. Remote Sensing, 1996, 17(11): 2115-2133.
  • 6Woodock C E, Harward V J. Nested-hierarchical scene models and image segmentation [J]. Remote Sensing, 1992, 13:3167-3187.
  • 7Curran P J. The semivariogram in remote sensing: an introduction[J]. Remote Sensing of Environment, 1988,24(3) :493 - 507.
  • 8Atkinson P M, Lewis P. Geostatistical classification for remote sensing: an introduction [J]. Computers and Geosciences, 2000,26:361-371.
  • 9Matheron G. The theory of regionalized variables and its applications [M ]. Les Cahiers du Centre de Morphologie Mathematiquede Fontainebleau, Ecole des Mines de Paris, Fascicule 5,Fontainebleau. 1971.211.
  • 10Ramstein G,Raffy M. Analysis of the structure of radiometric re-motely- sensed images [J]. Remote Sensing, 1989, 10(6):1049 - 1073.

共引文献10

同被引文献78

引证文献5

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部