期刊文献+

相关双边跳扩散模型的期望折现罚金函数

Expected Discounted Function Under a Correlated Two-sided Jump-diffusion Model
原文传递
导出
摘要 带干扰的经典风险模型,其干扰项可被解释为未来的总理赔量,保费收入以及未来投资收益的不确定性,用双指数跳扩散过程来描述这些不确定性,考虑双边跳扩散模型的期望折现罚金函数,给出其所满足的积分微分方程,并给出破产时间和破产时公司现值的联合拉普拉斯变换的显式表达公式. In the perturbed classical risk model, the perturbed part is usually interprieted as the fluctuation of the total claim amount, the premium income and the surplus investment return. This paper uses a double expontial jump diffusion model to describle the fluctuation. We consider the expected discounted penalty function under a correlated two-sided jump diffussion model, and deduce the integro-differential equation satisfied by it. We also give the explicit expression for the joint Laplace transform of the ruin time and the firm value.
出处 《数学的实践与认识》 CSCD 北大核心 2013年第11期20-25,共6页 Mathematics in Practice and Theory
基金 江苏省自然科学青年基金(2012165) 苏州科技学院院基金
关键词 双边跳扩散模型 推广的Lundberg方程 破产 two-sided jump diffusion generalized Lundberg equation ruin
  • 相关文献

参考文献8

  • 1Gerber H U, Shiu E S W. On the time value of ruin[J]. North American Actuarial Journal, 1998, 2(1): 48-78.
  • 2Lin X S, Willmot G E. The moments of the time of ruin, the surplus before ruin, and the deficit at ruin[J]. Insurance: Mathematics and Economics, 2000, 27: 19-44.
  • 3] Dufresne F, Gerber H U. Risk theory for the compound Poisson process that is perturbed by diffusion[J]. Insurance: Mathematics and Economics, 1991, 10: 51-59.
  • 4Kou S G, Wang H. First passage times of a jump diffusion process[J]. Advances in Applied Prob- ability, 2003, 35: 427-445.
  • 5Kou S G, Wang H. Option pricing under a double exponential jump diffusion model[J]. Management Science, 2004, 50: 1178-1192.
  • 6Chi Y. Analysis of expected discounted penalty function for a general jump-diffusion risk model and applications in finance[J]. Insurance: Mathematics and Economics, 2010, 46(2): 385-396.
  • 7Gerber H U, Landry B. On the discounted penalty at ruin in a jump-diffusion and the perpetual put option[J]. Insurance: Mathematics and Economics, 1998, 22: 263-276.
  • 8Zhang Z M, Yang H, Li S M. The perturbed compound Poisson risk model with two-sided jumps[J]. Journal of Computational and Applied Mathematics, 2010, 233: 1773-1784.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部