期刊文献+

Sylvester矩阵方程极小范数最小二乘解的迭代解法 被引量:2

An Iterative Method for the Least Squares Solution with the Minimum Norm of Sylvester Matrix Equation
原文传递
导出
摘要 研究了Sylvester矩阵方程最小二乘解以及极小范数最小二乘解的迭代解法,首先利用递阶辨识原理,得到了求解矩阵方程AX+YB=C的极小范数最小二乘解的一种迭代算法,进而,将这种算法推广到一般线性矩阵方程A_iX_iB_i=C的情形,最后,数值例子验证了算法的有效性. In this paper, Sylvester matrix equation AX ~ YB = C with two unknown matrices X, Y is discussed. By applying a hierarchical identification principle, we propose an iterative algorithm for solving the least norm problem of the equation. We prove that the iterative solution converges to the least-squares solution and the least-squares solution with the minimum norm for some initial value. Furthermore, the iterative method is extended to solve the least Frobenius norm problem of general matrix equation. Finally, the algorithms are tested on computer and the results verify the theoretical findings.
机构地区 江南大学理学院
出处 《数学的实践与认识》 CSCD 北大核心 2013年第11期239-243,共5页 Mathematics in Practice and Theory
基金 国家自然科学基金(11001109)
关键词 Sylvester矩阵方程 迭代解法 最小二乘解 极小范数解 Sylvester matrix equation iterative algorithm least-square solution minimum norm solution
  • 相关文献

参考文献11

  • 1Stykel T. Solving projected generalized Lyapunov equations using SLICOT[J]. IEEE International Symposium on Computer-Aided Control Systems Design, 2006: 14-18.
  • 2Costa O L V, Fragoso M D. Stability results for discrete-time linear systems with Markovian jumping parameters[J]. Journal of Mathematical Analysis and Applications, 1993, 179(1: 154-178.
  • 3Baksalary J K, Kala R. The matrix equation AX - YB = C[J]. Linear Algebra and Applications, 1979, 25(1): 41-43.
  • 4Flanders H, Wimmer H K. On the matrix equation AX - XB = C and AX - YB = C[J]. SIAM Journal on Applied Mathematics, 1977, 32C4: 707-710.
  • 5W. E. Roth, The equations AX - YB = C and AX - XB = C in matrices[J]. Proceedings of the American Mathematical Society, 1952, 3(3): 392-396.
  • 6Ding F, Chen T. Gradient based iterative algorithms for solving a class of matrix equations[J]. IEEE Transactions on Automatic Control, 2005, 50(8): 1216-1221.
  • 7Ding F, Chen T. Iterative least squares solutions of coupled Sylvester matrix equations[J]. Systems and Control Letters, 2005, 54(1): 95-107.
  • 8Peng Z, Hu X, Zhang L. The bisymmetric solutions of the matrix equation A1X1 B1 + A2X2 B2 +''" +AzXzBz = C and its optimal approximation[J]. Linear Algebra and Applications, 2007, 426(2-3): 583-595.
  • 9Sheng X, Chen G. A finite iterative method for solving a pair of linear matrix equations (AXB, CXD) = (E, F)[J]: Applied Mathematics and Computation, 2007, 189(2): 1350-1358.
  • 10Lancaster P, Tismenetsky M. The theory of matrices(2nd ed)[M]. Academic Press, London, 1985.

同被引文献14

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部