期刊文献+

基于全局优化策略的场景分类算法 被引量:4

Scene Classification Based on Global Optimized Framework
下载PDF
导出
摘要 提出一种基于全局优化策略的场景分类算法.该算法基于整幅图像提取全局场景特征——空间包络特征.从图像块中提取视觉单词,且定义隐变量表示该视觉单词语义,然后引入隐状态结构图描述整幅图像的视觉单词上下文;在场景分类策略上,构造由相容函数组成的目标函数,其中相容函数度量全局场景特征、隐变量与场景类别标记的相容度,通过求解目标函数的全局最优解推断图像的场景类别标记.在标准场景图像库上的对比实验表明该算法优于当前有代表性的场景分类算法. A scene classification algorithm based on global optimized framework is proposed. Firstly, the global scene feature named spatial envelop is obtained from the whole image, the visual word of each image block is extracted, and latent variable is defined to represent the semantic feature of the extracted visual word. Secondly, the structure graph of latent state is introduced to represent the context of visual words. In respect to scene classification strategy, objective function consisting of different potential functions is constructed in which potential functions are defined to measure the relevance of the variables including global scene feature, latent variables and scene category. Finally, the scene category of the image is determined when the global optimized solution of objective function is obtained. The experiments on the standard dataset demonstrate that the proposed algorithm achieves better results than the state-of-the-art algorithms.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2013年第5期440-446,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.41171341) 航空科学基金项目(No.20125168001) 教育部新世纪优秀人才支持计划项目(No.NCET-09-0126) 教育部博士点基金项目(No.20110121110020) 河南省科技创新人才杰出青年项目(No.114100510006) 福建省自然科学基金项目(No.2011J01365) 郑州市科技创新人才培育计划项目(No.10PTGG342-1)资助
关键词 图像解析 场景分类 函数优化 视觉单词 Image Analysis, Scene Classification, Function Optimization, Visual Word
  • 相关文献

参考文献21

  • 1江悦,王润生,王程.采用上下文金字塔特征的场景分类[J].计算机辅助设计与图形学学报,2010,22(8):1366-1373. 被引量:14
  • 2王宇石,高文.用基于视觉单词上下文的核函数对图像分类[J].中国图象图形学报,2010,15(4):607-616. 被引量:16
  • 3Qin Jianzhao, Yung N H C. Scene Categorization via Contextual Visual Words. Pattern Recognition, 2010, 43 (5) : 1874-1888.
  • 4Lazebnik S, Schmid C, Ponce J. Beyond Bags of Features : Spatial Pyramid Matching for Recognizing Natural Scene Categories//Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA, 2006, II : 2169-2178.
  • 5Bosch A,Muttoz, Zisserman A. Scene Classification Using a HybridGenerative/Discriminative Approach. IEEE Trans on Pattern Analysis and Machine Intelligence, 2008, 30(4) : 712-727.
  • 6Rasiwasia N, Vasconcelos N M. Scene Classification with Low- Dimensional Semantic Spaces and Weak Supervision//Proc of the IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008:1-6.
  • 7Bosch A, Munoz X, Marti R. A Review: Which is the Best Way to Organize/Classify Images by Content? Images and Vision Compu- ting, 2007, 25(6) : 778-791.
  • 8杨丹,李博,赵红.鲁棒视觉词汇本的自适应构造与自然场景分类应用[J].电子与信息学报,2010,32(9):2139-2144. 被引量:3
  • 9Jiang Y, Chen J, Wang R S. Fusing Local and Global Information for Scene Classification. Optical Engineering, 2010, 49(4) : 1-10.
  • 10Song D J, Tao D C. Biologically Inspired Feature Manifold for Scene Classification. IEEE Trans on Image Processing, 2010, 19 (1) : 174-184.

二级参考文献86

  • 1Vailaya A, Figueiredo M, Jain A, et al. Image classification for content-based indexing [J].IEEE Transactions on hnage Processing, 2001, 10( 1 ) : 117-130.
  • 2Oliva A, Torralba A. Modeling the shape of the scene: A holistic representation of the spatial envelope [ J]. International Journal of Computer Vision, 2001, 42 ( 3 ) : 145-175.
  • 3Naphade M, Huang T. A probabilistic framework for semantic video indexing, filtering and retrieval [ J]. IEEE Transaction on Multimedia, 2001, 3 ( 1 ) : 141 - 151.
  • 4Serrano N, Savakis A, Luo J. A computationally efficient approach to indoor/outdoor scene classification [ C ] // Proceedings of the 16th International Conference on Pattern Recognition. Quebec, Canada,IEEE Press, 2002: 146-149.
  • 5Vogel J, Schiele B. Natural scene retrieval based on a semantic modeling step [ C] //Proceedings of International Conference on Image and Video Retrieval. Dublin, Ireland: Springer, 2004: 907-215.
  • 6Mikolajczyk K, Leibe B, Schiele B. Local features for object class recognition [ C ] //Proceedings of the Tenth IEEE International Conference on Computer Vision. Beijing, China, IEEE Press, 2005: 1792-1799.
  • 7Jiang W, Er G, Dai Q H. Similarity-based online feature selection in content-based image retrieval [ J]. IEEE Transactions on Image Processing, 2006, 15 ( 3 ) : 702- 712.
  • 8Perronnin F, Dance C, Csurka G,et al. Adapted vocabularies for generic visual categorization [ C ]//European Conferece on Computer Vision. Graz, Austria,Springer, 2006: 464-475.
  • 9Quelhas P, Monay F, Odobez J, et al. A thousand words in a scene [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(9) : 1575-1589.
  • 10Zhang R, Zhang Z. Effective image retrieval based on hidden concept discovery in image database [ J]. IEEE Transactions on Image Processing, 2007, 16(2): 562-572.

共引文献35

同被引文献41

  • 1Oliva A, Torralba A. Modeling the shape of the scene: aholistic representation of the spatial envelope[j] . Interna-tional Journal of Computer Vision, 2001,42(3): 145-175.
  • 2Bosch A, Munoz X, Marti R. Which is the best way toorganize/classify images by content[J]. Image and VisionComputing, 2007,25(6): 778-791.
  • 3Serrano N, Savakis A E,Luo J. Improved scene classifi-cation using efficient low-level features and semantic cues[J]. Pattern Recognition, 2004, 37(9) : 1773-1784.
  • 4Luo j , Savakis A E, Singhal A. A Bayesian network-based framework for semantic image understanding [ J ].Pattern Recognition, 2005,38(6) : 919-934.
  • 5Fan J , Gao Y, Luo H, et al. Statistical modeling andconceptualization of natural images [J ]. Pattern Recogni-tion, 2005, 38(6): 865-885.
  • 6Bosch A, Zisserman A, Munoz X. Scene classificationVia pLSA[C]. Berlin Heidelberg: Computer Vision-EC-CV, 2006: 517-530.
  • 7Lazebnik S, Schmid C, Ponce J. Beyond bags of fea-tures :spatial pyramid matching for recognizing naturalscene categoriest C]. Computer Vision and Pattern Rec-ognition, 2006 IEEE Computer Society Conference on.IEEE, 2006: 2169-2178.
  • 8Oliva A, Torralba A. Scene-centered description fromspatial envelope properties[ C]. Berlin Heidelberg: Bio-logically Motivated Computer Vision, 2002: 263-272.
  • 9Ess A,Mueller T,Grabner H,et al. Segmentation-based urban traffic scene understanding [ C ]. Proceed-ings 20th British Machine Vision Conference-BMVC,2009.
  • 10Burges C J C. A tutorial on support vector machines {orpattern recognition [ J ]. Data Mining and KnowledgeDsiscovery, 1998, 2(2) : 121-167.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部