期刊文献+

三维隐SVM算法设计及在胸CT图像病灶检测中的应用 被引量:4

Design of 3D Latent-SVM and Application to Detection of Lesions in Chest CT
下载PDF
导出
摘要 为改善病灶形状不规则、纹理结构简单等因素对计算机辅助肺CT中病灶检测精度的影响,提出将疑似病灶与整体肺区的相对位置关系作为传统形状、纹理特征之外的一种新的隐变量,参与训练过程.为符合病灶的三维特征,引入基于三维矩阵模式的SVM,进一步设计含隐变量三维矩阵模式SVM.将吉林省肿瘤医院的150例病例建立数据库,用其余三种SVM方案与本文方案进行比较,文中算法可达到97.05%的真阳性和9.21%的假阳性,证明其优越性及辅助放疗师的有效性. Accuracy of Computer Aided Detection ( CAD ) of lung lesions in chest CT may be affected by irregular shapes and simple texture of the lesions. To improve the poor performance of current CAD schemes, relative position from the suspected lesion to the whole lung area is added as a latent variable on the basis of traditional texture and shape features, which also participates in optimizing the SVM. Furthermore, considering 3D feature of the lung lesions, 3D matrixes based SVM (3D SVM) is combined into the Latent SVM (L-SVM) to design 3D SVM with latent variables (3 D-L-SVM). 150-case database from Jilin Tumor Hospital is used to validate the proposed algorithm. The performances of other three CAD schemes are compared on the same database. True the false positives of 9.21%. The experimental results and effectiveness of assisting the radiologists. positives of the 3 D-L-SVM achieves 97.5 % with verify the advantages of the proposed algorithm
出处 《模式识别与人工智能》 EI CSCD 北大核心 2013年第5期460-466,共7页 Pattern Recognition and Artificial Intelligence
基金 吉林省科技发展计划资助项目(No.201201107)
关键词 计算机辅助诊疗 三维矩阵 隐SVM Computer-Aided Diagnosis, 3D Matrix, Latent SVM
  • 相关文献

参考文献18

  • 1Lee S L A, Kouzani A Z, Hu E J. Automated Detection of Lung Nodules in Computed Tomography Images: A Review. Machine Vision and Applications, 2012, 23( 1 ) : 151-163.
  • 2Felzenszwalb P, McAllester D, Ramanan D. A Discriminatively Trained, Multiscale, Deformable Part Model// Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Anchor- age, USA, 2008:1-8.
  • 3Felzenszwalb P F, Girshick R B, McAUester D, et al. Object De- tection with Diseriminatively Trained Part-based Models. IEEE Trans on Pattern Analysis and Machine Intelligence, 2010, 32(9) : 1627 - 1645.
  • 4杨扬,李善平.分割位置提示的可变形部件模型快速目标检测[J].自动化学报,2012,38(4):540-548. 被引量:11
  • 5Chen S, Suzuki K, MacMahon H. Development and Evaluation of a Computer-Aided Diagnostic Scheme for Lung Nodule Detection in Chest Radiographs by Means of Two-Stage Nodule Enhancement with Support Vector Classification. Medical Physics, 2011, 38 ( 4 ) : 1844-1858.
  • 6Xu J W, Suzuki K. Massive-Training Support Vector Regression and Ganssian Process for False-Positive Reduction in Computer-Aided Detection of Polyps in CT Colonography. Medical Physics, 2011,38 (4) : 1888-1902.
  • 7Zhu Yanjie, Tan Yongqiang, Hua Yanqing, et al. Feature Selection and Performance Evaluation of Support Vector Machine (SVM)- Based Classifier for Differentiating Benign and Malignant Pulmonary Nodules by Computed Tomography. Journal of Digital Imaging,2010, 23(1) : 51-65.
  • 8Lee Y, Seo J B, Lee J G, et al Performance Testing of Several Classifiers for Differentiating Obstructive Lung Diseases based on Texture Analysis at High-Resolution Computerized Tomagraphy (HBCT). Computer Method and Programs in Biomedicine, 2009, 93(2) : 206-215.
  • 9Gangeh M J, Srenzen L, Shaker S B, et al. A Texton-Based Approach for the Classification of Lung Parenchyma in CT Images. Medical Image Computing and Computer-Assisted Intervention( MIC- CAI), 2010, 13(3) : 595-602.
  • 10Kim N, Seo J B, Lee Y, et al. Development of an Automatic Clas- sification System for Differentiation of Obstructive Lung Disease Using HRCT. Journal of Digital Imaging, 2009, 22(2) : 136-148.

二级参考文献39

  • 1Lee Y, Seo J B, Lee J G, et al. Performance Testing of Several Classifiers for Differentiating Obstructive Lung Diseases Based on Texture Analysis at High-Resolution Computerized Tomography.Computer Method and Programs in Biomedicine, 2009, 93 (2): 206 -215.
  • 2Gangeh M J, Srensen L, Shaker S B, et al. A Texton-Based Ap- proach for the Classification of Lung Parenchyma in CT Images. Medical Image Computing and Computer-Assisted Intervention, 2010, 13(3) : 595 -602.
  • 3Kim N, Seo J B, Lee Y, et al. Development of an Automatic Classi- fication System for Differentiation of Obstructive Lung Disease Using HRCT. Journal of Digital Imaging, 2009, 22 (2) : 136 - 148.
  • 4Ye Xujiong, Lin Xinyu, Dehmeshki J, et al. Shap-Based Computer- Aided Detection of Lung Nodules in Thoracic CT Images. IEEE Trans on Biomedical Engineering, 2009, 56 ( 7 ) : 1810 - 1820.
  • 5Suzuki K, Annato S G Ⅲ, Li F, et al. Massive Training Artificial Neural Network for Detection of False Positives in Computerized De- tection of Lung Nodules in Low-dose Computed Tomography. Medi- cal Physics, 2003, 30(7) : 1602-1617.
  • 6Suzuki K, Shiraishi J, Abe H, et al. False-Positive Reduction in Computer-Aidod Diagnostic Scheme for Detecting Nodules in Chest Radiographs by Means of Massive Training Artificial Neural Net- work. Academic Radiology, 2005, 12(2): 191-201.
  • 7Suzuki K, Li F, Sane S, et al. Computer-Aided Diagnostic Scheme for Distinction between Benign and Malignant Nodules in Thoracic Low-dose CT by Use of Massive Training Artificial Neural Network. IEEE Trans on Medical Imaging, 2005, 24(9) : 1138 -1150.
  • 8Suzuki K, Abe H, MacMahon H, et al. Image-Processing Tech- nique for Suppressing Ribs in Chest Radiographs by Means of Mas- sive Training Artificial Neural Network (MTANN). IEEE Trans on Medical Imaging,2006, 25(4) : 406 -416.
  • 9Oda S, Awai K, Suzuki K,et al. Performance of Radiologists in Detection of Small Pulmonary Nodules on Chest Radiographs : Effect of Rib Suppression by the Massive Training Artificial Neural Network (MTANN) Technique on the Performance of Radiologists. American Journal of Roentgenology, 2009, 193 : 397 -402.
  • 10Wang Qingzhu. Detection of Lung Nodules in CT Image Based on 3D SVMs. Ph. D Dissertation. Changchun, China: Jilin University,2011 ( in Chinese).

共引文献12

同被引文献41

  • 1李阳,史东承,王珂,王燕,魏艳芳.基于图像模式的肺结节识别[J].吉林大学学报(工学版),2013,43(S1):463-467. 被引量:3
  • 2OCAK H. A medical decision support system based o: support vector machines and the genetic algorithm for th evaluation of fetal well-being [ J ]. Journal of medica systems, 2013, 37(2): 1-9.
  • 3CHEN N, LIU G, LIAO Y, et al. Research on comput- er-aided diagnosis of lung nodule [ C ]. IEEE Workshop on Electronics, Computer and Applications, 2014 : 1019- 1022.
  • 4COENEN A, HONDA O, VAN DER JAGT E J, et al. Computer-assisted solid lung nodule 3D volumetry on CT: influence of scan mode and iterative reconstruction: a CT phantom study [ J ]. Japanese Journal of Radiology, 2013, 31(10): 677-684.
  • 5CHEN B, KITASAKA T, HONMA H et al. Automatic segmentation of pulmonary blood vessels and nodules based on local intensity structure analysis and surface propagation in 3D chest CT images [ J ]. International Journal of Computer Assisted Radiology and Surgery,2012, 7(3) : 465-482.
  • 6DESOLNEUX A, MOISAN L, MOREL J M. To my taste, the authors' focus on crucial works in Gestalt psychology is absolutely adequate: They concentrate on Wertheimer and Metzger. What I appreciate most is the authors' position with regard to the fundamental ques- tion of perception: "What is the nature of visual stimu- li?" I quote: "Common sense tells us that a figure could not arise just by chance : we are "sure" [ J 1. Gestalt Theory, 2013, 35(2):183-206.
  • 7LEE K H, HONG H, HAHN S, et al. Summation or axi- al slab average intensity projection of abdominal thin-sec- tion CT datasets: Can they substitute for the primary re- construction from raw projection data[ J]. Journal of Dig- ital Imaging, 2008,4(21 ) :422- 432.
  • 8TARTAR A, KILIC N, AKAN A. A new method fi)r pul- monal~' nodule detection using decision trees [ C ]. Engi- neering in Medicine and Biology Society (EMBC) , 35th Annual Internationa| Conference of the IEEE. IEEE, 2013:7355 -7359.
  • 9高隽,谢昭,张骏,吴克伟.图像语义分析与理解综述[J].模式识别与人工智能,2010,23(2):191-202. 被引量:20
  • 10贾同,魏颖,吴成东.基于几何形变模型的三维肺血管图像分割方法[J].仪器仪表学报,2010,31(10):2296-2301. 被引量:18

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部