期刊文献+

一种基于粒子群参数优化的改进蚁群算法 被引量:111

Improved ant colony optimization algorithm based on particle swarm optimization
原文传递
导出
摘要 蚁群算法是一种应用广泛、性能优良的智能优化算法,其求解效果与参数选取息息相关.鉴于此,针对现有基于粒子群参数优化的改进蚁群算法耗时较大的问题,提出一种新的解决方案.该方案给出一种全局异步与精英策略相结合的信息素更新方式,且通过大量统计实验可以在较大程度上减少蚁群算法被粒子群算法调用一次所需的迭代代数.仿真实验表明,所提出算法在求解较大规模旅行商问题时具有明显的速度优势. @@@@Ant colony optimization(ACO) algorithm is an intelligent algorithm which has a wide range of applications and better performance, and its search quaility is closely related with the parameters selection. Therefore, aiming at the large time-consuming problem of the existing improved ACO alogorithm, a novel ACO algorithm based on particle swarm optimization(PSO) algorithm is proposed. The new pheromone update method is presented, which combines the global asynchronous feature and elitist strategy. Moreover, the iteration number of ACO algorithm invoked by PSO algorithm is reduced significantly by large amounts of statistical experiments. The simulation results show that the proposed ACO algorithm has obvious advantage in search speed when it is used for solving the large-scale traveling salesman problem.
出处 《控制与决策》 EI CSCD 北大核心 2013年第6期873-878,883,共7页 Control and Decision
基金 国家自然科学基金项目(60374032) 教育部第36批留学回国人员科研启动基金项目(1341) 北京市重点学科建设项目(XK100080537)
关键词 粒子群算法 改进蚁群算法 迭代代数 旅行商问题 particle swarm optimization improved ant colony optimization iteration number traveling salesman problem
  • 相关文献

参考文献10

  • 1Colomi A, Dorigo M,Maniezzo V. Distributedoptimization by ant colonies[C]. Proc of European Conf onArtificial Life. Paris: Elsevier Press, 1991: 134-142.
  • 2Colomi A,Dorigo M,Maniezzo V. An investigationof some properties of an “Ant algorithm,’[C]. Proc ofthe Parallel Problem Solving From Nature Conference.Brussels: Elsevier Press, 1992: 509-520.
  • 3Dorigo M,Maniezzo V,Colomi A. The ant system:Optimization by a colony of cooperating agents[J]. IEEETrans on Systems, Man and Cybernetics, 1996, 26(1): 29-41.
  • 4Dorigo M, Gambardella L M. Ant colony system: Acooperative learning approach to the traveling salesmanproblem!J]. IEEE Trans on Evolutionary Computation,1997, 1(1): 53-56.
  • 5StUtzle T, Gambardella M. Distributed optimization byant colonies[C]. Proc of the Int Conf on Artificial NeuralNetworks and Genetic Algorithms. Norwich: Czech Press,1997: 245-249.
  • 6Eberhart R C’ Kennedy J. Particle swarm optimization[C].Proc of IEEE Int Conf on Neural Networks. Nagoya: IEEEPress, 1995: 39-43.
  • 7Kennedy J, Eberhart R C. A new optimizer using particlesswarm theory[C]. Proc of 6th Int Symposium on MicroMachine and Human Science. Perth: IEEE Press, 1995:1942-1948.
  • 8闵克学,葛宏伟,张毅,梁艳春.基于蚁群和粒子群优化的混合算法求解TSP问题[J].吉林大学学报(信息科学版),2006,24(4):402-405. 被引量:18
  • 9柴宝杰,刘大为.基于粒子群优化的蚁群算法在TSP中的应用[J].计算机仿真,2009,26(8):89-91. 被引量:18
  • 10夏辉,王华,陈熙.一种基于微粒群思想的蚁群参数自适应优化算法[J].山东大学学报(工学版),2010,40(3):26-30. 被引量:13

二级参考文献19

  • 1Haibin Duan,Daobo Wang,Xiufen Yu.Research on the Optimum Configuration Strategy for the Adjustable Parameters in Ant Colony Algorithm[J].通讯和计算机(中英文版),2005,2(9):32-35. 被引量:16
  • 2K E Parsopoulos, M N Vrahatis. Recent Approaehes to Global Optimization Problems Through Particle Swarm Optimization [ J ]. N atural Computing , 2002,1 (2 -3) :235 -306.
  • 3M Doritos, V Maniezzo, A Colorni. Positive feedback as a search strategy[ R]. Technical 91 - 016, Dipartimento di Elettronica, Politecnico di Milano, IT, 1991.
  • 4M Dorigo, G D Caro. Ant algorithms for discrete optimization [ J ]. Artificial Life, 1999, 5(3) :137 - 172.
  • 5M Dorigo, L M Gambardella. Ant colony system: a cooperative learning approach to the traveling salesman problem [ J ]. IEEE Transactions on Evolutionary Computation, 1997,1 (1) : 53 -66.
  • 6T Stutzle, H H Hoos. Max -min ant system[ J]. Future Generation Computer System, 2000,16 (8) :889 - 914.
  • 7R C Eberhart, J Kennedy. A new optimizer using particles swarm theory[ C]. Proc Sixth Int Symposium on Micro Machine and Human Science, Nagoya, 1995.39 -43.
  • 8D J Rosenkrantz, R E Stearns, P M Lewis. An analysis of several heuristics for the traveling salesman problem[ J]. SIAM J Comput, 1977, 6:563 -581.
  • 9L M Gambardella, M Dorigo. Ant - Q: a reinforcement learning approach to the traveling salesman problem [ A ]. Proceedings of ML - 95, Twelfth Intern Conf on Machining [ C ]. Morgan kaufmann, 1995. 252-260.
  • 10DORIGO M, VITTORIO M, ALBERTO C. The Ant System: Optimization by a Colony of Cooperating Agents [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 1996, 26 ( 1 ) : 1-13.

共引文献38

同被引文献1031

引证文献111

二级引证文献875

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部