期刊文献+

基于显著性检测的自适应机器人拣选系统

Adaptive robot picking system based on saliency detection
下载PDF
导出
摘要 在分析了现有拣选系统需要事先进行样本特征提取的情况下,为适应复杂多变的拣选环境,提出了基于显著性检测的自适应目标拣选算法。该方法通过前景目标的相互对比,识别出最具显著性特征的物体作为拣选对象,避免了预先学习的过程,并能用分析结果不断修正识别特征,提高了系统的工作效率和自动化程度。设计了适用于工业机器人的拾取控制系统,涉及网络通信、总线管理和运动控制等多方面。实验结果表明了系统的准确性与稳定性。 After the existing picking systems is analyzed, which need sample feature extraction before work, an adaptive target picking algorithm based on saliency detection is proposed to meet complex environments. The algorithm identifies the most salient object as the chosen one by mutual comparisons of the foreground objects. The pre-learning process is avoided and the results are used to revise characteristics for identification constantly. Thus, the method improves efficiency and automation of the system. A picking control system for industrial robot, involving network communication, fieldbus, motion control and many other aspects. Validation work is based on R8405 industrial robot developed by our CNC center. Experimental results demonstrate accuracy and stability of the proposed system.
出处 《计算机工程与设计》 CSCD 北大核心 2013年第6期2141-2146,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(50905069) 国家科技重大专项基金项目(2012ZX04001012) 国家科技支撑计划基金项目(2012BAF13B01)
关键词 显著性检测 机器视觉 工业机器人 缺陷检测 自适应控制 saliency detection machine vision industrial robot defect detection adaptive control
  • 相关文献

参考文献12

  • 1ZOUJ, LIUCC gabor ZHANG Y, et al. Object recognition using similarity [J. Pattern Recognition, 2013, 46 (1): 434-448.
  • 2Quyen Bui T T, Hong K S. Evaluating a color based active ba- sis model for object recognition J. Computer Vision and Im- age Understanding, 2012, 116 (11): 1111-1120.
  • 3Goferman S, Zelnik Manor L, Tal A. Context-aware saliency detection J. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2012, 34 (10): 1915-1926.
  • 4CHENG M M, ZHANG G X, Mitra N J, et al. Global contrast based salient region detection -C //CVPR, Providence, RI, US, 2011, 409-416.
  • 5Achanta R, Hemami S, Estrada F, et al. Frequency-tuned sa- lient region detection [C // CVPR Miami, FL, US, 2009: 1597-1604.
  • 6WinnemOller H, Kyprianidis J E, Olsen S C. XDoG: An ex-tended difference of gaussians compendium including advanced image stylization [J]. Computers Graphics, 2012, 36 (6): 740-753.
  • 7Einevoll G T, Plesser H E. Extended difference-of-gaussians model incorporating cortical feedback for relay cells in the lateral geniculate nucleus of cat [-J. Cognitive Neurodynamics, 2012, 6 (4).- 307-324.
  • 8Stout)esdijk M J, Zijp M, Boetes C, et al. Computer aided anal ysis of breast MRI enhancement kinetics using mean shift cluste- ring and multifeature iterative region of interest selection [Jd. Journal of Magnetic Resonance Imaging, 2012, 36 (5): 1104 1112.
  • 9Sunat K, Padungweang P, Chiewchanwattana S. Generalized :ransport mean shift algorithm for ubiquitous intelligence [J. gimulation, 2012, 88 (10): 1202-1215.
  • 10Sftoiu A, Gheonea D I, Ciurea T. Hue histogram analysis of real-time elastography images for noninvasive assessment of liver fibrosis [J]. American Journal of Roentgenology, 2007, 189 (4) : w?a2-w233.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部