摘要
在分析了现有拣选系统需要事先进行样本特征提取的情况下,为适应复杂多变的拣选环境,提出了基于显著性检测的自适应目标拣选算法。该方法通过前景目标的相互对比,识别出最具显著性特征的物体作为拣选对象,避免了预先学习的过程,并能用分析结果不断修正识别特征,提高了系统的工作效率和自动化程度。设计了适用于工业机器人的拾取控制系统,涉及网络通信、总线管理和运动控制等多方面。实验结果表明了系统的准确性与稳定性。
After the existing picking systems is analyzed, which need sample feature extraction before work, an adaptive target picking algorithm based on saliency detection is proposed to meet complex environments. The algorithm identifies the most salient object as the chosen one by mutual comparisons of the foreground objects. The pre-learning process is avoided and the results are used to revise characteristics for identification constantly. Thus, the method improves efficiency and automation of the system. A picking control system for industrial robot, involving network communication, fieldbus, motion control and many other aspects. Validation work is based on R8405 industrial robot developed by our CNC center. Experimental results demonstrate accuracy and stability of the proposed system.
出处
《计算机工程与设计》
CSCD
北大核心
2013年第6期2141-2146,共6页
Computer Engineering and Design
基金
国家自然科学基金项目(50905069)
国家科技重大专项基金项目(2012ZX04001012)
国家科技支撑计划基金项目(2012BAF13B01)
关键词
显著性检测
机器视觉
工业机器人
缺陷检测
自适应控制
saliency detection
machine vision
industrial robot
defect detection
adaptive control