期刊文献+

基于多目标遗传算法的串联通道水冷散热器优化设计 被引量:15

Optimization of Serpentine Channel Heat Sink Based on Multi-objective Genetic Algorithm
下载PDF
导出
摘要 为最大限度的提高水冷散热器的散热效率,需要对外形尺寸固定的水冷散热器进行优化设计。将串联通道散热器按通道数离散成N个并联的热阻单元,各个热阻单元之间用焓变热阻相连,并以此为基础建立散热器的热阻网路模型及压力损失模型。以热阻和压力损失模型为目标函数,在层流状态下,采用多目标遗传算法对散热器的结构参数,如通道数、通道宽度和高度以及入口水流速度进行优化,通过多次迭代得到Pareto优化解。采用计算流体力学仿真方法验证散热器的热阻模型和压力损失模型的准确性,并从优化解集中选择部分解进行比较分析。这种方法能够同时降低串联通道散热器的热阻和压力损失,为串联通道水冷散热器的优化设计提供理论依据,在工程上也具有很好的指导意义。 In order to improve the efficiency of serpentine channel heat sink, optimization design must be done for it on the condition that outline dimensions of the heat sink(length, width and height) are chosen. The thermal resistance network model and pressure loss model are proposed based the discrete thermal resistance unit, which are parallel of N channels. Thermal resistance and pressure loss model are selected as objective functions, and structural parameters of heat sink are optimized in laminar flow range based on multi-objective genetic algorithm with fixed length, width and height. The variables include the number of channels, channel width and height and the velocity at the inlet. The Pareto optimal solutions are obtained after much iteration. Computational fluid dynamics simulation is performed to validate the correctness of thermal resistance model and pressure drop model. This method not only can provide some theoretical base for the optimization design of serpentine channel water-cooling heat sink, but also can be used in the engineering.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2013年第10期151-155,共5页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(61106107)
关键词 散热器优化 串联通道 热阻模型 压力损失 多目标遗传算法 Optimization of heat sink Serpentine channel Thermal resistance model Pressure loss Multi-objective genetic algorithm
  • 相关文献

参考文献10

  • 1KNIGHT R W, HALL D J, GOODLING J S, et al. Heat sink optimization with application to microchannels[J]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1992, 15(5). 832-842.
  • 2PERRET C, BOUSSEY J, SCHAEFFER C, et al. Analytical modeling, optimization, and realization of cooling devices in silicon technology[J]. IEEE Trans. Compon. Packag. Technol., 2000, 23(4).. 665-672.
  • 3BISWAL L, CHAKRABORTY S, SOM S K. Design and optimization of single-phase liquid cooled microchannel heat sink[J]. IEEE Trans. Compon. Packag. Technol.,.2009, 32(4): 876-886.
  • 4揭贵生,孙驰,汪光森,聂子玲,孟庆云.大容量电力电子装置中板式水冷散热器的优化设计[J].机械工程学报,2010,46(2):99-105. 被引量:40
  • 5PHAROAH J G An efficient method for estimating flow in the serpentine channels and electrodes of PEM fuel cells[C]// ASME Conference, 2006(47608): 547-554.
  • 6PHAROAH J G~ On the permeability of gas diffusion media used in PEM fuel cells[J]. J. Power Sources, 2005, 144(1)- 77-82.
  • 7COPELAND D. Optimization of parallel plate heat sinks for forced convection[C]// Semiconductor Thermal Measurement and Management Symposium, 2000. Sixteenth Annual IEEE, 2000: 266-272.
  • 8MAHARUDRAYYA S, JAYANTI S, DESHPANDE A P. Pressure losses in laminar flow through serpentine channels in fuel cell stacks[J]. J. Power Sources, 2004, 138(1-2): 1-13.
  • 9GOSSELIN L, TYE-GINGRAS M, MATHIEU-POTVIN F. Review of utilization of genetic algorithms in heat transfer problems[J]. Int. J. Heat Mass Transfer, 2009, 52(9-10). 2169-2188.
  • 10DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Trans. Evol. Comput., 2002, 6(2)- 182-197.

二级参考文献14

  • 1李永东.高性能大容量交流电机调速技术的现状及展望[J].电工技术学报,2005,20(2):1-10. 被引量:48
  • 2徐德好.微通道液冷冷板设计与优化[J].电子机械工程,2006,22(2):14-18. 被引量:24
  • 3THOMAS B, DONALD G H. Optimal pulse width modulation for three-level inverters[J]. IEEE Trans. Power. Elec., 2001, 20(1): 41-47.
  • 4HEFNER A R. A dynamic electro-thermal model for the IGBT[J]. IEEE Trans. lnd. Applicat., 1994, 30(2): 394- 405.
  • 5CHAN Suyun, PAOLO M, MAURO C, et al. Thermal component model for electrothermal analysis of IGBT module systems[J]. IEEE Trans. Advanced Packing, 2001, 24(3): 401-406.
  • 6RAEL S, SCHAEFFER C, PERRET R. Electrothermal characterization of IGBT[C]// Proceeding of IEEE- IAS'94, Denver, CO, Oct.2-5,1994:1 336-1 343.
  • 7KEVIN A M, YOGENDRA K J, GERHARD H S. Thermal characterization of a liquid cooled AISiC base plate with integral pin fins[J]. IEEE Trans. Comp. Packaging Technol., 2001, 24(2): 3-10.
  • 8KNIGHT R W, HALL D J, GOODLING J S, et al. Heat sink optimization with application to microchannels[J]. IEEE Trans. Comp. Hybrids Manufact. Technol., 1992, 15(5): 832-842.
  • 9LUC Meysenc, LUCAS Saludjian, ALAIN Brieard. A high heat flux IGBT micro exchanger setup[J]. IEEE Trans. Comp. Hybrids Manufaet. Technol., 1997, 20(3). 334-341.
  • 10CHARLOTTE G, CHRISTIAN S. Integrated micro heat sink for power multichip module[J]. IEEE Trans. Ind. Applicat., 2000, 36(1): 217-221.

共引文献39

同被引文献94

引证文献15

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部