期刊文献+

具饱和传染率和时滞两阶段结构的传染病模型 被引量:1

Analysis of a Delayed Epidemic Model with Two Stage-Structure and Saturation Incidence
下载PDF
导出
摘要 讨论了一类具饱和传染率和时滞两阶段结构传染病模型,利用离散动力系统频闪映射理论,得到了传染病最终消除和成为地方病的阈值,当它小于1时,无病平衡点是全局渐近稳定的,此时疾病消除。当它大于1时,地方病平衡点是局部渐近稳定的,此时传染病成为地方病。 A SIS Epidemic model with saturation incidence and two stage-structure is discussed in this paper. Using the discrete dynamical system determined by the stroboscopic map, the threshold is obtained. If the threshold less than one, sufficient condition for global asymptotic stability of the infection-free equilib- rium is obtained, Moreover, we show that the endemic equilibrium is local asymptotic stability and perma- nence if the threshold is larger than one.
出处 《数理医药学杂志》 2013年第3期260-263,共4页 Journal of Mathematical Medicine
关键词 传染病模型 饱和传染率 阶段结构 全局渐近稳定 epidemic model saturation incidentce stage-structure global asymptotic stability
  • 相关文献

参考文献7

  • 1Walter G, Alello, Freedman H I. A time-delay of single species growth with stage structure. Mathematical Bilscience, 1990, 101: 139-153.
  • 2Waiter G, Alello, Freedman H I. Analysis of a model representing stage-structured populations growth with stage-dependent time de- lay. SIAM J APPI Math,1992,52(3) :855-869.
  • 3马知恩,周文仓,王稳地,等.传染病动力学的数学建模及研究.北京:科学出版社,2004.
  • 4郑丽丽,王豪,方勤华.一类具有非线性传染力的阶段结构SI模型[J].数学的实践与认识,2004,34(8):128-135. 被引量:7
  • 5曹瑾,武佳,唐蕾,张双德.具脉冲两阶段结构的自治SIS传染病模型[J].大学数学,2011,27(5):62-68. 被引量:5
  • 6Y. Kuang. Delay Differential Equations With Applications in Popu- lation Dynamics, Academic Press, New York. 1993.
  • 7X. Song, L. Chen. Optimal harvesting and stability for a two species competitive system with stage-structure, Math. Biosci, 2001,173-186.

二级参考文献14

  • 1Sabin A B. Measles, killer of millions in developing countries: Strategies of elimination and continuation control[J]. Eur J Epidemiol, 1991, 7: 1-22.
  • 2Nokes D, Swinton J. The control of childhood viral infections by pulse vaccination[J]. IMA J, Math Appl Biol Med, 1995, 12: 29-53.
  • 3Agur Z L, et al. Pulse mass measles vaccination across age cohorts[J]. Proc NatlAcad Sci, USA, 1993, 90:11698-11702.
  • 4Agur Z L, Deneubourg J L. The effect of environmental disturbance on the dynamics of marine intertidal populations[J]. Theor Pop Biol, 1985, 27: 75-90.
  • 5Shulgin B, et al. Pulse vaccination strategy in the SIR epidemic model[J]. Bulletin of Math Bio, 1998, 60: 1-26.
  • 6Roberts M G, Kao R R. The dynamics of an infectious disease in a population with birth pulses[J]. Math Biosci,1998, 149: 23.
  • 7Anderson R M. The Population Dynamics of Infectious Disease; Theory and applications, Chapman and Hall[M].London, 1982.
  • 8Gorbach S L, Bartlett J G, Blacklow N R. Infectious Disease[M]. Philadephia: Saunders, 1998.
  • 9Shulman S T et. The Biologic and Clinical Basis of Infectious Deseases[M]. Philadephia: Saunders, 1997.
  • 10Walter G Alello, Freedman H I. A time-delay model of single species growth with stage structure[J].Mathematical Bioscience, 1990, 101: 139-153.

共引文献9

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部