摘要
讨论了一类具饱和传染率和时滞两阶段结构传染病模型,利用离散动力系统频闪映射理论,得到了传染病最终消除和成为地方病的阈值,当它小于1时,无病平衡点是全局渐近稳定的,此时疾病消除。当它大于1时,地方病平衡点是局部渐近稳定的,此时传染病成为地方病。
A SIS Epidemic model with saturation incidence and two stage-structure is discussed in this paper. Using the discrete dynamical system determined by the stroboscopic map, the threshold is obtained. If the threshold less than one, sufficient condition for global asymptotic stability of the infection-free equilib- rium is obtained, Moreover, we show that the endemic equilibrium is local asymptotic stability and perma- nence if the threshold is larger than one.
出处
《数理医药学杂志》
2013年第3期260-263,共4页
Journal of Mathematical Medicine
关键词
传染病模型
饱和传染率
阶段结构
全局渐近稳定
epidemic model
saturation incidentce
stage-structure
global asymptotic stability