期刊文献+

新密度泛函计算分子间相互作用能的基函数重叠误差BSSE研究

Study on the BSSE of Several New Density Functionals at the Moment of Computing Intermolecular Interaction Energies
下载PDF
导出
摘要 使用最近几年发展的Minnesota系列泛函和长程校正泛函、色散校正泛函,采用6-311++g(3d,3p)基组,研究这些新泛函在计算分子间相互作用能时的基函数重叠误差BSSE。结果表明M06-2X,B97-D3,PW6B95-D3,M062X-D3,PBELYP-XDM6泛函的BSSE相对误差η值小于20%;M05-2X,M08-HX,LRC-ωB97X-2(LP),B05-XDM6泛函的BSSE相对误差η值在20%~50%之间;而M11,LRC-ωPBEh,LRC-BNL,ωB97X-D,revPBE-D3,B3LYP-XDM6泛函的BSSE相对误差η大于50%。 BSSE of several newly developed density functionals including the Minnesota-suite functionals, long range corrected functionals and dispersion corrected functionals, has been studied when they are used to compute intermolecular interaction energies. Basis set 6-311 + + g(3d,3p) is chosen, conclusions are : the relative value of BSSE (TI) is less than 20 % for M06-2X, B97-D3, PW6B95-D3, MO62X-D3 and PBELYP-XDM6; the relative value of BSSE (η) is between the range of 20 % and 50 % for MOS-2X, M08-HX, LRC-ωB97X-2(LP) and BOS- XDM6; and the relative value of BSSE (η) is larger than 50 % for MII, LRC-ωPBEh, LRC-BNL, ωB97X-D, revPBE-D3 and B3 LYP-XDM6.
作者 廖舒雯
出处 《贵州科学》 2013年第3期5-7,共3页 Guizhou Science
关键词 分子间相互作用 密度泛函 基函数重叠误差 相对误差 intermolecular interactions, density functional, BSSE, relative error
  • 相关文献

参考文献8

  • 1Andrew G, Anna K, Emil P, 2012. Q-Chem Users Manual Ver-sion 4. 0.1.
  • 2Alvarez-Idaboy J R, Galano A, 2010. Counterpoise corrected interaction energies are not systematically better than uncor-rected ones: comparison with CCSD (T) CBS extrapolated valuesj L]. Theoretica ChimicaActa, . 126(1): 75-85.
  • 3Cerny}. , Jure ka P, poner J, et al. 2006. Benchmark database of accurate (MP2 and CCSD (T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs [J]. Phys. Chem. Chem. Phys. 8(17): 1985-1993.
  • 4Fusti-Molnar. 1. , Shao. Y. , Jung. Y. , et al. 2006. Advances in methods and algorithms in a modem quantum chemistry program package [J]. Phys. Chem. Chem. Phys. (8): 3172-3191.
  • 5Jure ka P, ezdl , Riley K E, et al. 2008. Quantum Chemical Benchmark Energy and Geometry Database for Molecular Clusters and Complex Molecular Systems (www. begdb. com): A Users Manual and Examples [J]. Collection of Czechoslovak Chemical Communications. 73 ( 10): 1261- 1270.
  • 6Trucks. G. W., Schlegel. H. B., Frisch. M. J. , et al. 2009. Gaussian 09, Revision A. 02, Gaussian, Inc. , Wallingford CT.
  • 7Van Mourik T, Wilson A K. 1999. Benchmark calculations with correlated molecular wavefunctions. XIII. Potential energy curves for He2, Ne2 and Ar2 using correlation consistent basis sets through augmented sextuple zeta [J]. Molecular Physics. 96 (4) : 529-547.
  • 8孙涛,王一波.用GGA密度泛函及其长程、色散校正方法计算各类氢键的结合能[J].物理化学学报,2011,27(11):2553-2558. 被引量:36

二级参考文献51

  • 1Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
  • 2Grimme, S. J. Comp. Chem. 2006, 27, 1787.
  • 3Johnson, E. R.; Wolkow, R. A.; DiLabio, G. A. Chem. Phys. Lett. 2004, 394, 334.
  • 4Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72,650.
  • 5Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J. Chem. Phys. 1987, 87, 5968.
  • 6Head-Gordon, M.; Pople, J. A.; Frisch, M. J. Chem. Phys. Lett. 1988, 153, 503.
  • 7Krishnan, R.; Pople, J. A. Int. J. Quantum Chem. 1978, 14, 91.
  • 8Sinnokrot, M. O.; Sherrill, C. D. J. Phys. Chem. A 2006, 110, 10656.
  • 9Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, 1989.
  • 10Tuma, C.; Boese, A. D.; Handy, N. C. Phys. Chem. Chem. Phys. 1999, 1, 3939.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部