期刊文献+

分步实现多态量子信息的传输

How to Realize Quantum Information Transfer by Multisteps
下载PDF
导出
摘要 两游戏参与者Alice和Bob在进行二人零和量子硬币博弈时,游戏者之一Bob可以通过对盒子里的硬币采取量子策略的操作,干扰博弈的公平性结果,进而控制整个游戏的胜负。以此理论为基础,在量子链的格点处排布上合适初态的量子硬币,通过相应量子硬币"摇动"操作,分几步让量子链一端的信息传递到另一端,从而利用量子博弈理论为任意态量子信息的传输提供了一套全新的分步式方案,并且由于量子博弈不受经典操作的影响,所以在本方案信息传输的过程中大为降低了经典行为的干扰。 Two game players, Alice and Bob, play the two player zero - sum game of quantum coins. If one of them, eg. Bob, takes quantum strategies, he could disturb the fair results of the game, and furthermore, control the whole game. Based on these, atribute quantum coins with appropriate original states on the spin chain, and pass the information through the chain by the multisteps. Then,it is given to use the theory of quantum game to get a new idea of quantum information transfer of arhitrary states. Comparing with old ways ,this new transfer is immune to the classical disturbance, and can be more precisely controlled. So the quantum information can be perfectly transfeted
作者 任恒峰
机构地区 忻州师范学院
出处 《忻州师范学院学报》 2013年第2期6-8,共3页 Journal of Xinzhou Teachers University
基金 山西省科技厅基金项目(2010021003-5)
关键词 博弈论 量子博弈 量子信息传输 game theory quantum game trandfer of quantum information
  • 相关文献

参考文献15

  • 1Sleane. A. The Ion Trap Quantum Information Processor[J]. Appl Phys B,1997(64) :623.
  • 2C. Monroe, D. M. Meekhor, B. E. King, et al. Demonstra-tion of a Fundamental Quantum Logic Gate [ J]. Phys RevLett,1995(75) :4714.
  • 3Q. A. Turchette,C. J. Hood,W. Lange,et al. Measurementof Conditional Phase Shifts for Quantum Logic [ J] . PhysRev Lett, 1995(75) :4710.
  • 4N A. Gershenfeld and Isaac L, Chuang Bulk Spin - Reso-nance Quantum Computation [ J] . Science, 1997 ( 275 ):350.
  • 5Loss. D, Divincenzo. D. P. Quantum Computation withQuantum Dots[ J]. Phys Rev A, 1998(57) :120.
  • 6A. Barenco, D. Deutsch, et al. Conditional Quantum Dy-namics and Logic Gates [ J]. Phys Rev Lett, 1995 (74):4083.
  • 7Von. Neumann. J,0. Morgenstem, Artur Ekert,et al. Theo-ry of Games and Economic Behavior [ M]. Princeton, NJ :Princeton University Press, 1944.
  • 8Gibbons. R. A Primer in Game Theory [ M]. New York:Harvester Wheatsheaf, 1992.
  • 9Eisert. J,Wilkens. M,Lewenstein. M. Quantum Games andQuantum Strategies[ J]. Phys Rev Lett, 1999(83) :3077.
  • 10Eisert. J,Wilkens. M,Lewenstein. M. Quantum Games andQuantum Strategies[ J]. Phys Rev Lett, 1999(83) :3077..

二级参考文献10

  • 1苏晓琴,郭光灿.量子通信与量子计算[J].量子电子学报,2004,21(6):706-718. 被引量:63
  • 2周杰,李筠,马雷.任意多人的量子博弈[J].量子电子学报,2006,23(2):173-177. 被引量:5
  • 3计新,张寿.利用两个EPR对隐形传送三粒子纠缠态(英文)[J].量子电子学报,2006,23(6):816-819. 被引量:13
  • 4Neumann J V, Morgenstern O. Theory of Games and Economic Behavior [M]. Princeton, NJ:Princeton University Press, 1947.
  • 5Gibbons R A. Primer in Game Theory [M]. New York: Harvester Wheatsheaf, 1992.
  • 6Eisert J, et al. Quantum games and quantum strategies [J]. Phys. Rev. Left., 1999, 83: 3077.
  • 7Benjamin S C, Hayden P M. Multi-player quantum games [J]. Phys. Rev. A, 2001, 64(3): 030301.
  • 8Meyer D A. Quantum strategies [J]. Phys. Rev. Lett., 1999. 82: 1052.
  • 9Goldenberg L, Vaidman L, Weisner S. Quantum gambling [J]. Phys. Rev. Left., 1999, 82: 3356.
  • 10Chen J L, et al. Noisy quantum game [J]. Phys. Rev. A, 2002, 65: 052320.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部