摘要
本文针对多井对比中的地层划分问题,提出了利用自组织神经网络进行地层划分的解决办法。该方法利用未分层井段的测井信号,结合自组织神经网络的自适应算法对测井信号进行反复学习,最终得到样本空间的分类结果。该方法不仅可以针对每一口井的测井信号进行处理,而且可以将某一口井的学习结果进行保留,用于其它井测井信号进行分类的分类器。
In this paper, we put forward a method to solve the problem of stratum segmentation in multiwell correlation by self-organizing neural network. By using adaptive self-organizing neural network, it gets the labeled result from the original wellog signal. This method not only can process one well every time, but also can save the learning result to seve as classifier of other welllog signals.
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2000年第3期309-313,共5页
Pattern Recognition and Artificial Intelligence
关键词
地层划分
测井资料解释
自组织神经网络
Artificial Neural Network, Self-Organization, Kohonen Net, Welllog, Stratum Segmentation