期刊文献+

基于时空依赖性的区域路网短时交通流预测模型 被引量:31

Short-term traffic flow forecasting model for regional road network based on spatial-temporal dependency
原文传递
导出
摘要 由于多数交通流预测模型仅利用了目标路段交通流的历史数据,在一定程度上影响了预测效果。为此,该文提出了一种基于时空依赖性的区域路网短时交通流预测模型。首先,根据区域路网各路段间的拓扑关系,将其抽象为明确表征上下游路段关系的树状结构,进而根据上下游通路上交叉口转弯率的多阶分配来量化上下游路段的时空依赖性,并将其用于时空自回归差分移动平均模型(STARIMA)空间权重矩阵的改进,最后利用历史数据对改进后的STA-RIMA模型进行参数标定,并用于短时交通流预测。实验结果表明:经过改进后的STARIMA模型,具有更好的预测效果,为区域路网短时交通流预测提供了一种新的方法。 Most traffic flow forecasting models exploit the historical traffic flow data of the objective link with the forecasting performance being influenced to some extent. This paper presents a short-term regional traffic flow forecasting model based on spatial-temporal dependency. A tree structure was abstracted representing the relations of downstream and upstream links according to the topological relations of regional urban road network. The multiple distribution of turning rates at the intersections on the route from upstream to downstream was used to quantify the spatial temporal dependency with the quantized spatial-temporal dependency then used to modify the spatial weight matrix of STARIMA (space-time autoregressive integrated moving average) model. The parameters of STARIMA model were calibrated using the historical traffic flow data and exploited to the short-term traffic flow forecasting. The experimental results show that the improved STARIMA model can provide better forecasting performance as a new approach for short-term traffic flow forecasting of regional road network.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第2期215-221,共7页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(60721003 60834001) 国家"八六三"高技术项目(2012AA112305)
关键词 交通流 预测 STARIMA 时空依赖性 traffic flow forecasting STARIMA spatial-temporal dependency
  • 相关文献

参考文献20

  • 1杨兆升.城市交通流诱导系统理论与模型[M].北京:人民交通出版社,2001.
  • 2Stephanedes Y J,Michalopoulos P G. Improved estimation oftraffic flow for real-time control [C]// TransportationResearch Record 795, Transportation Research Board.Washington DC, 1981 : 28 - 39.
  • 3Ahmaed M S,Cook A R. Analysis of freeway traffictime-series data by using Box-Jenkins technique [C]//Transportation Research Record 722, TransportationResearch Board. Washington DC, 1979 : 1 - 9.
  • 4Okutani I,Stephanedes Y J. Dynamic prediction of trafficvolume through Kalman filtering theory [J], TransportationResearch Part B : Methodological , 1984, 18(1) : 1-11.
  • 5Doughetry M S,Cobbett M R. Short-term inter-urban trafficforecasts using neural networks [J]. International J o urn a Iof Forecasting * 1997,13(1): 21 - 31.
  • 6Ledoux C. An urban traffic flow model integrating neuralnetworks [J]. Transportation Research Part C ; EmergifigTechnologies * 1997,5(5) : 287 - 300.
  • 7Davis G A, Nihan N L. Nonparametric regression andshort-term freeway traffic forecasting [J]. journal o fTransportation Engineering ^ 1991,117(2) : 178 — 188.
  • 8Vanajakshi L, Laurence R R. A comparison of theperformance of artificial neural networks and support vectormachines for the prediction of traffic speed [C]// 2004 IEEEIntelligent Vehicles Symposium. Parma * Italy * 2004 : 194 -199.
  • 9YUE Yang. Spatial-temporal dependency of traffic flow andits implications for short-term traffic forecasting [D]. HongKong: The University of Hong Kong, 2006.
  • 10Kamarianakis Y, Prastacos P. Space-time modeling of trafficflow [J]. Computers &- Geosciences,2005,31: 119 — 133.

二级参考文献5

共引文献30

同被引文献245

引证文献31

二级引证文献196

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部