期刊文献+

前缘钝度和雷诺数对三角翼流场的影响 被引量:4

Reynolds Numbers and Leading-edge Bluntness Effects on Delta Wing
下载PDF
导出
摘要 采用RANS方法实现三角翼前缘涡流场结构的数值模拟,计算采用全湍模式。通过数值模拟充分理解非尖前缘三角翼前缘涡的流场结构。数值模拟得到的三角翼表面压强分布与实验结果进行了对比,研究不同因素对三角翼前缘涡的影响。通过对比分析流场结构得到:尖前缘三角翼前缘涡是从机翼前缘拖出,分离位置固定;而钝前缘三角翼由于前缘分离点不固定,前缘涡流场结构变得更加复杂。对于钝前缘三角翼,当马赫数不变时,随着雷诺数的增加,三角翼前缘涡的分离被延迟。 The steady states for the numerical simulation of 1 of the discretized Reynolds average Navier-Stokes RANS) equations are achieved eading-edge vortex flow of delta wing. The calculations were performed with the as- sumption of fully turbulent flow. The overall goal is to understand more fully the flow topology for these non-sharp leading-edge delta wings. Comparisons between computational results and experiments are presented with regard to surface pressure coefficient and surface flow patterns for the suction side of the delta wing. Some factors affecting the vertical flow structures on deha wing are investigated thoroughly. Through analyzing and comparing the simula- tion results, it can be concluded that: The sharp leading edge shows the typical leading edge vortex beginning at the wing apex, but blunt-edged leading-edge separation is fundamentally more complex because primary separation is no longer affixed at the leading edge, the separation onset of blunt leading-edge varies with many parameters, such as Reynolds number and Mach number, etc. For the blunt leading-edge, an increase in Reynolds number, with Mach number held constant, was demonstrated to delay the onset of leading-edge vortex separation.
作者 张付昆 李栋
出处 《科学技术与工程》 北大核心 2013年第16期4741-4746,共6页 Science Technology and Engineering
关键词 三角翼 雷诺平均 前缘涡 delta wing RANS leading-edge vortex
  • 相关文献

参考文献9

  • 1Chu Julio, Luckring J M. Experimental surface pressure data obtained on 65° delta wing across Reynolds number and Mach number ranges Volume 3-Medium_Radius Leading Edge, NASA Technical Memorandum 4645, 1996.
  • 2Chu Julio, Luckring J M. Experimental surface pressure data ob- tained on a 65° delta wing across Reynolds number and Mach Num- ber ranges Volume 1-Sharp Leading Edge, NASA Technical Memo- randum 4645, 1996.
  • 3Obayashi S, Chiba K, Nakahashi K. CFD visualization of second pri- mary vortex structure on a 65° delta wing, AIAA, 2004- 1231, 2004.
  • 4Luckring J M. Reynolds number, compressibility, and leading-edge bluntness effects on delta-wing aerodynamics, 24th international con- gress of the aeronautical sciences, 2004.
  • 5Konrath R, Klein C, Engler R H, et al. Analysis of PSP Results ob- tained for the VFE-265° delta wing configuration at sub-and transonic speeds, AIAA 2006-60, 2006.
  • 6Fritz W, Cummings R M. What was learned from the numerical simu- lations for the VFE-2, AIAA, 2008-399, 2008.
  • 7Konrath R, Klein C, Schrtlder A. PSP and PIV investigations on the VFE-2 configuration in sub-and transonic flow. AIAA, 2008- 379, 2008.
  • 8白鹏,周伟江,汪翼云.三角翼大攻角绕流数值模拟研究[J].航空学报,1999,20(3):254-257. 被引量:3
  • 9Crippa S. Accurate physical and numerical modeling of complex vor- tex phenomena over delta wings. KTH Engineering Sciences, 2006.

二级参考文献2

  • 1张涵信 北京空气动力研究所.亚、超声速旋涡流动特征的定性分析研究.空气动力学发展论文集[M].北京:北京空气动力研究所,1995.8-15.
  • 2张涵信,空气动力学发展论文集,1995年,8页

共引文献2

同被引文献54

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部