期刊文献+

耦合变系数Newell-Whitehead方程的达布变换及其多孤子解 被引量:1

Darboux Transformation and Multi-Soliton Solutions for the Coupled Variable-Coefficient Newell-Whitehead Equation
下载PDF
导出
摘要 借助耦合变系数Newell-Whitehead方程的Lax对和谱问题的规范变换构造了一个包含多参数的N-波达布变换.运用达布变换来产生耦合变系数Newell-Whitehead方程的多孤子解.变系数函数的几何和内部性质对孤波的形状和孤波的移动方向有非凡的影响.最后,通过合适地选择参数,耦合变系数Newell-Whitehead方程的多孤子解的性质被显示出来. An N-fold Darboux transformation with multi-parameters for the coupled variable-coefficient Newell-Whitehead equation is established with the help of a gauge transformation of the spectral problem. With the application of Darboux transformation, multi-soliton solutions of the coupled variable-coefficient Newell Whitehead equation are constructed. The geometry and the internal properties of the variable coef ficient function have a remarkable influence on soliton wave shape and moving direction. Finally, the prop erties of the multi-soliton solutions of the coupled variable-coefficient Newell-Whitehead equation are ex plieitly demonstrated through appropriate parameter selection.
作者 刘萍
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第5期68-74,共7页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(11171276 11126141) 西南大学基本科研业务费专项资金项目(XDJK2013CO24)
关键词 达布变换 耦合变系数Newell-Whitehead方程 LAX对 多孤子解 Darboux transformation coupled variable-coefficient Newell-Whitehead equation Lax pair multi-soliton solution
  • 相关文献

参考文献2

二级参考文献17

  • 1刘萍,张荣.广义偶合KdV孤子方程的达布变换及其精确解[J].洛阳师范学院学报,2005,24(5):1-5. 被引量:4
  • 2王明亮,周宇斌.Chafee-Infante反应扩散方程的精确解[J].兰州大学学报(自然科学版),1996,32(3):26-30. 被引量:20
  • 3刘萍.Broer-Kaup系统的达布变换及其孤子解[J].数学物理学报(A辑),2006,26(B12):999-1007. 被引量:11
  • 4Kametaka Y. On the Nonlinear Diffusion Equefon of Kolm Ogorov-Petmvskii-Piskunov Type[J]. Osaka J Math, 1976,13:11 -66.
  • 5Newel] A C, Whitehead J A. Finite Bandwidth Finite Amplitude Conviction[ J]. J Fluid Mech, 1969, 38:279- 330.
  • 6Wang M L. Exact Solutions for a Compound KdV - Burgers Equation[J]. Phys Lett A,1996,213:279 - 287.
  • 7LI Xue-mei, GENG Xian-guo. Lax matrix and a generalized coupled KdV hierarchy[J]. Phys A,2003,327:357-370.
  • 8Li Y S, Ma W X, Zhang J E. Darboux transformation of classical Boussinesq system and its new solutions[J]. Phys Lett A, 2000,275:60-56.
  • 9Li Y S, Zhang J E. Darboux transformation of classical Boussinesq system and its multi-solition solutions[J]. Phys Lett A, 2001,284:253-258.
  • 10FAN En-gui. Darboux transformation and soliton-like solutions for the Gerdjikov-Ivanov equation[J]. Phys A:Math Gen, 2000,33:5925-6933.

共引文献25

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部