期刊文献+

舰艇沉没概率解析计算模型

Ship sinking probability analytic calculation model
下载PDF
导出
摘要 对影响沉没概率计算的要素进行分析,给出沉没概率的解析计算模型;然后,对解析计算模型的2个关键问题,即水密区破损概率计算模型和沉没判据模型进行了研究。考虑到武器炸点在三维方向上分布是独立的,建立了水密区破损概率计算的解析模型。分析舰艇沉没的判据指标,并建立基于支持向量数据描述的沉没判别算法。最后,使用此解析计算模型对某船模的沉没概率进行了计算,该算例说明了此解析模型的准确性。 Factors that affect ship sinking probability calculation are analyzed and the analytic calculation model is given firstly. Watertight region damage probability calculation model and sinking judgment model which are the two pivotal models of the analytic model are researched. Concerning the weapon blast point distribution is self-governed in three-dimensional direction;the analytic watertight region damage probability calculation model is founded. And then, ship sinking judgment indexes are analyzed and the sinking judgment arithmetic is founded based on support vector data description. At last the sinking probability of a ship model is calculated using the analytic calculation model and the results verified the correctness of the analytic model.
出处 《舰船科学技术》 北大核心 2013年第5期65-68,115,共5页 Ship Science and Technology
关键词 沉没概率 破损概率 解析模型 支持向量数据描述 沉没判据 sinking probability damage probability analytic model support vector data description sinking judgment index
  • 相关文献

参考文献7

  • 1浦金云,邱金水,程智斌.舰艇生命力[M].北京:海潮出版社,2001.
  • 2胡铁牛.货船概率破舱稳性计算及对分舱的影响[J].上海交通大学学报,1997,31(11):24-29. 被引量:16
  • 3GREENHORN J. The assessment of surface ship vulnerability to underwater attack [ J ]. The Royal institution of Naval Architects, 1988,3 ( 1 ).
  • 4姜礼平,吴晓平,戴明强,等.工程数学[M].武汉:湖北科学技术出版社,2000.
  • 5TAX D, DUIN R. Data domain description by support vectors[ C ]. Proceedings of ESANN99. Brussels: D. Facto Press ,251 - 256.
  • 6TAX D, DUIN R. Support vector data description [ J ] Machine Learninig,2004 ( 4 ) :45 - 66.
  • 7李凌均,韩捷,郝伟,董辛,何正嘉.支持向量数据描述用于机械设备状态评估研究[J].机械科学与技术,2005,24(12):1426-1429. 被引量:22

二级参考文献7

  • 1团体著者,船舶法定检验技术规则,1995年
  • 2Tax D M J , Duin R P W. Support vector domain description[J]. Pattern Recognition Letters, 1999,20(11-13): 1191-1199.
  • 3Vapnik V N. The Nature of Statistical Learning Theory[M].New York:Springer-Verlag, 1995.
  • 4Xin D, Wu Z H, Zhang W F. Support vector domain description for speaker recognition [A]. Proceedings of the 2001 IEEE Signal Processing Society Workshop [C], Massachusetts,2001:481-488.
  • 5Chen Y Q, Zhou X, Huang T S. One-class SVM for learning in image retrieval[A]. In: Proceedings of International Conference on Image Processing 2001 [C], Thessaaloniki, Greece,2001:440-447.
  • 6Tax D M J , Duin R P W. Outliers and data descriptions[A].In: Proceedings of the Seventh Annual Conference of the Advarced School for Computing and Imaging [C], Delft,2001:234-241.
  • 7李凌均,张周锁,何正嘉.基于支持向量数据描述的机械故障诊断研究[J].西安交通大学学报,2003,37(9):910-913. 被引量:55

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部