期刊文献+

念珠菌ERG11基因耐药机制研究进展 被引量:1

Resistant mechanisms of ERGll gene of Candida
下载PDF
导出
摘要 近年来,随着医疗技术与经济的发展,侵袭性真菌感染尤其是念珠菌感染病例持续增高。由于唑类药物的广泛应用,临床念珠菌耐药菌株不断出现,使得对耐药机制的深入研究迫在眉睫。在念珠菌对唑类药物的耐药机制中,麦角甾醇合成通路上ERG11基因的突变和高表达被视为念珠菌最重要的耐药机制之一,而ERG11基因突变和高表达可能是多种机制共同作用的结果。 Invasive fungal infections, especially candida spp infection, are increasing with the development of medical technology and economy in recent years. Azoles have many advantages in treating fungal infections. More and more resistance strains appear in clinical treatment because of the widely use of azoles. Therefore, research of the molecular mechanisms involving in azoles resistance is a serious imminent issue. ERG11 is a key enzyme in the ergosterol synthesis pathway of candida spp. Point mutations and over-express in ERG11 are deemed as one of the most important mechanisms of azoles resistance. The aim of this study is to systematically review the resistant mechanisms of ERG11 gene of candida to azoles.
出处 《国际医药卫生导报》 2013年第9期1226-1230,共5页 International Medicine and Health Guidance News
基金 山西省基础研究项目(2012011045-3) 山西医科大学科技创新基金(01201013)
关键词 念珠菌 耐药性 唑类药物 机制 ERG11基因 Candida Antifungal resistance Azoles Mechanisms ERG11 gene
  • 相关文献

参考文献5

二级参考文献90

共引文献72

同被引文献11

  • 1Yapar N. Epidemiology and risk factors for invasive candidiasis [J]. Ther Clin Risk Manag, 2014, 10: 95-105.
  • 2Basma R, Barada G, Ojaimi N, et al. Susceptibility of Candida a/bicans to common and novel antifungal drugs, and relationship between the mating type locus and resistance, in Lebanese hospital isolates[J]. Mycoses, 2009, 52(2): 141-148.
  • 3Espinel-Ingroff A, Pfaller MA, Bustamante B, et al. Multilaboratory study of epidemiologieal cutoff values for detection of resistance in eight Candida species to flueonazole, posaconazole, and voriconazole [J]. Antimicrob Agents Chemother, 2014, 58 (4): 2006-2012.
  • 4Vale-Silva LA, Coste AT, Ischer F, et al. Azole resistance by loss of function of the sterol AS'6-desaturase gene (ERG3) in Candida albicans does not necessarilv decrease virulence [J]. AntimicrobAgents Chemother, 2012, 56 (4): 1960-1968.
  • 5Lai MH, Bard M, Pierson CA, et al. The identification of a gene family in the Saeeharomyces cerevisiae ergosterol biosynthesis pathway[ J ]. Gene, 1994, 140( 1 ): 41-49.
  • 6Zweytick D, Hrastnik C, Kohlwein SD, et al. Biochemical charac- terization and subcellular localization of the sterol C-24 (28) reductase, erg4p, from the yeast saeeharomyees eerevisiae[ J ]. FEBS Lett, 2000, 470( 1 ): 83-87.
  • 7He X, Zhang B, Tan H. Overexpression of a sterol C-24(28 ) reduetase increases ergosterol production in Saeehazgmyces eerevisiae[J]. Biotechnol Lett, 2003, 25( 10): 773-778.
  • 8He X, Guo X, Liu N, et al. Ergosterol production from molasses by genetically modified Saccharomyces cerevisiae [J]. Appl MierobiolBiotechnol, 2007, 75( 1 ): 55-60.
  • 9Henry KW, Cruz MC, Katiyar SK, et al. Antagonism of azole activity against Candida albicans following induction of muhidrug resistance genes by selected antimicrobial agents [J]. Antimicrob Agents Chemother, 1999, 43(8): 1968-1974.
  • 10Schillig R, Morschh/iuser J. Analysis of a fungus-specific trans- cription factor family, the Candida albicans zinc cluster proteins, by artificial activation[J]. Mol Microhiol, 2013, 89(5 ): 1003-1017.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部