期刊文献+

Chebyshev局部配点法在轨迹优化中的应用 被引量:4

Application of Chebyshev local collocation method to trajectory optimization
下载PDF
导出
摘要 伪谱法在轨迹优化中应用广泛,其中Chebyshev伪谱法在求解轨迹优化问题时具有较快的收敛性和较高的精度.为了证明Chebyshev局部配点法在求解轨迹优化等问题的可行性,给Chebyshev局部配点法的应用提供理论基础,研究了Chebyshev局部配点法收敛性和稳定性.文中以Hyper-sensitive问题和Minimum-energy为例,分别用Chebyshev局部配点法与传统插值方法和经典Chebyshev伪谱法求接,计算结果表明:Chebyshev局部配点法是可行和有效的.该方法不仅在一定程度上相比于传统的插值法精度更高、计算速度更快,和经典Chebyshev伪谱法相比也略有优势. To improve the trajectory optimization with Chebyshev local collocation method,we study the convergence and stability of Chebyshev local collocation method and provide a theoretical basis for its application.In this paper,the examples of Hyper-sensitive and Minimum-energy problem verify the feasibility and effectiveness of Chebyshev local collocation method which not only is convergent and stable for Hyper-sensitive problem,but also can achieve higher accuracy and faster computation speed in some degree compared with traditional interpolation method and even classic Chebyshev pseudospectral method.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2013年第5期95-100,共6页 Journal of Harbin Institute of Technology
基金 国家国际科技合作专项资助项目(2012DFG61930)
关键词 Chebyshev伪谱法 轨迹优化 最优控制 插值 Chebyshev pseudospectral method trajectory optimization optimal control interpolation
  • 相关文献

参考文献11

  • 1雍恩米,陈磊,唐国金.飞行器轨迹优化数值方法综述[J].宇航学报,2008,29(2):397-406. 被引量:125
  • 2BETFS J T. Trajectory optimiation in the presence of uncertainty [ J ]. The Journal of the Astronautical Sciences, 2006, 54(2): 227-243.
  • 3CANUTO C, HUSSAINI M Y, QUARTERONI A, et al. Spectral Methods in Fluid Dynamics [ M]. New York: Springer-Verlag, 1988 : 135 - 179.
  • 4VILLADSEN J, MICHELSEN M L. Solution of Differen- tial Equation Models by Polynomial Approximation[M]. Upper Saddle River, NJ: Prentice-Hall, 1978: 152 - 163.
  • 5ELNAGAR G, KAZEMI M A, RAZZAGHI M. The pseudospectral legendre method for discretizing optimal control problems [ J ]. IEEE Transactions on Automatic Control, 1995, 40(10) : 1793 - 1796.
  • 6VLASSENBROECK J, Van DOREEN R. A chebyshev technique for solving nonlinear optimal control problems [J]. IEEE Transactions on Automatic Control, 1988, 33(4) : 333 -340.
  • 7FORNBERG B. A Practical Guide To Pseudospectral Methods [ M ]. Cambridge : Cambridge University Press, 1996 : 168 - 174.
  • 8BETTS J T. Practical Methods for Optimal Control Using Nonlinear Programming [ M ]. 1 s, Edition, Philadelphia : Society for Industrial and Applied Mathematics, 2001 : 89 - 121,.
  • 9KOKOTOVIC P, KHALIL H K, O' Reilly J. Singular Perturbation Methods in Control: Analysis and Design [ M]. San Diego: Academic Press, 1986:372 - 395.
  • 10RAO A V, MEASE K D. Eigenvector approximate dich- otomic basis method for solving hyper-sensitive optimal control problems [ J ]. Optimal Control Applications and Methods, 1999, 20(2): 59-77.

二级参考文献23

  • 1[1]Betts J T.Survey of numerical methods for trajectory optimization[J].Journal of Guidance,Control and Dynamics,1998,21(2):193-206.
  • 2[2]Ross I M,Fahroo F.A perspective on methods for trajectory optimization[C].In.AIAA/AAS Astrodynamics Specialist Conference and Exhibit.Monterey,CA,2002:1-7.
  • 3[3]Hull D G.Conversion of optimal control problems into parameter optimization problems[J].Journal of Guidance,Control and Dynamics,1997,20(1):57-60.
  • 4[4]Enright P J,Conway B A.Optimal finite-thrust spacecraft trajectories using collation and nonlinear programming[J].Journal of Guidance,Control and Dynamics,1991,10(5).
  • 5[10]Lu P.Inverse dynamics approach to trajectory optimization for an aerospace plane[J].Journal of Guidance,Control and Dynamics,1993,16(4):726-732.
  • 6[11]Bellman R E.Dynamic Programming[M].Princeton,USA:Princeton University Press,1957.
  • 7[13]Luus R.Iterative dynamic programming:from curiosity to a practical optimization procedure[J].Control and Intelligent Systems,1998,26:1-8.
  • 8[14]Bousson K.Single Gridpoint Dynamic Programming for trajectory Optimization[C].In.AIAA Atmospheric Flight Mechanics Conference and Exhibit.San Francisco,California,2005:1-8.
  • 9[15]Adam W,Tim C,Ellen B.Genetic algorithm and calculus of variations-based trajectory optimization technique[J].Journal of Spacecraft and Rockets,2003,40(6):882-888.
  • 10[16]Chen G,Hu Y,Wan Z M,et al.RLV Reentry Trajectory Multi-objective Optimization Design Based on NSGA-II Algorithm[C].In.AIAA Atmospheri Flight Mechanis Conferene and Exhibit.San Francisco,California,USA,2005:1-6.

共引文献124

同被引文献40

  • 1雍恩米,陈磊,唐国金.飞行器轨迹优化数值方法综述[J].宇航学报,2008,29(2):397-406. 被引量:125
  • 2任靖,李春平.最小距离分类器的改进算法——加权最小距离分类器[J].计算机应用,2005,25(5):992-994. 被引量:30
  • 3Benson, David A.,Huntington, Geoffrey T.,Thorvaldsen, Tom P.,Rao, Anil V.Direct trajectory optimization and costate estimation via an orthogonal collocation method. Journal of Guidance Control and Dynamics . 2006
  • 4Huntington, Geoffrey T.,Rao, Anil V.Optimal reconfiguration of spacecraft formations using the gauss pseudospectral method. Journal of Guidance Control and Dynamics . 2008
  • 5HAYKIN S. Adaptive Filter Theory (Fourth Edition) [M]. New Jersey.. Prentice Hall, 2001.
  • 6KALMAN R E. A New Approach to Linear Filtering and Prediction Problems [J]. Transaction of the ASME-Journal of Basic Engineering, 1960, 82(Series D): 35-45.
  • 7GORDON N J, SALMOND D J, SMITH A F M. Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation [J]. IEEE Proceedings on Radar and Signal Processing, 1993, 140(2): 107-113.
  • 8ARULAMPALAM M S, MASKELL S, GORDON N. A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking [J]. IEEE Trans on Signal Processing, 2002, 50(2): 174-188.
  • 9郭铁丁.深空探测小推力轨迹优化的间接法与伪谱法研究[D]清华大学,2012.
  • 10Gamal N. Elnagar,Mohammad A. Kazemi.Pseudospectral Chebyshev Optimal Control of Constrained Nonlinear Dynamical Systems[J]. Computational Optimization and Applications . 1998 (2)

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部