摘要
伪谱法在轨迹优化中应用广泛,其中Chebyshev伪谱法在求解轨迹优化问题时具有较快的收敛性和较高的精度.为了证明Chebyshev局部配点法在求解轨迹优化等问题的可行性,给Chebyshev局部配点法的应用提供理论基础,研究了Chebyshev局部配点法收敛性和稳定性.文中以Hyper-sensitive问题和Minimum-energy为例,分别用Chebyshev局部配点法与传统插值方法和经典Chebyshev伪谱法求接,计算结果表明:Chebyshev局部配点法是可行和有效的.该方法不仅在一定程度上相比于传统的插值法精度更高、计算速度更快,和经典Chebyshev伪谱法相比也略有优势.
To improve the trajectory optimization with Chebyshev local collocation method,we study the convergence and stability of Chebyshev local collocation method and provide a theoretical basis for its application.In this paper,the examples of Hyper-sensitive and Minimum-energy problem verify the feasibility and effectiveness of Chebyshev local collocation method which not only is convergent and stable for Hyper-sensitive problem,but also can achieve higher accuracy and faster computation speed in some degree compared with traditional interpolation method and even classic Chebyshev pseudospectral method.
出处
《哈尔滨工业大学学报》
EI
CAS
CSCD
北大核心
2013年第5期95-100,共6页
Journal of Harbin Institute of Technology
基金
国家国际科技合作专项资助项目(2012DFG61930)
关键词
Chebyshev伪谱法
轨迹优化
最优控制
插值
Chebyshev pseudospectral method
trajectory optimization
optimal control
interpolation