期刊文献+

基于Givens旋转变换的PSWF脉冲调制信号PAPR抑制方法 被引量:5

The Peak-to-average Power Ratio Reduction Method for Prolate Spheroidal Wave Function Based on Givens Rotation Transformation
下载PDF
导出
摘要 针对基于椭圆球面波函数(Prolate Spheroidal Wave Function,PSWF)脉冲的调制信号峰均功率比过高的问题,该文提出一种基于Givens旋转的PSWF脉冲峰均功率比抑制方法。该方法从正交PSWF脉冲组的特征向量加权表示入手,利用Givens旋转矩阵G(i,j,q)对所有子坐标平面(i,j)进行q角度的旋转,搜寻使脉冲组PAPR(Peak-to-Average Power Ratio,PAPR)值最小的旋转矩阵,最后利用该矩阵对原PSWF脉冲组进行Givens变换,从而实现降低PAPR的目标。针对Givens旋转次数较多导致计算复杂度大的问题,该文提出分组flipping迭代的算法实现方案。理论证明了该变换方法能够保持脉冲组的带内能量聚集和正交性。仿真结果表明,该方法有效降低了脉冲组的PAPR,同时系统传输效率、调制信号功率谱密度与系统误码率性能均保持不变。 To reduce the high Peak-to-Average Power Ratio (PAPR) of modulated signals based on Prolate Spheroidal Wave Function (PSWF) pulse, a novel PAPR reduction method for PSWF pulse based on Givens rotation is proposed. The method represents firstly orthogonal PSWF pulses with weighted eigenvectors, and then uses Givens matrix G(i, j, O)to rotate all the two-dimensional planes of coordinate (i, j)with any angle. The rotation matrix which most greatly reduces the PAPR of pulse set is searched and the original PSWF pulse set is transformed with the matrix. To reduce the realizaition complexity, a flipping iteration scheme based on grouping is proposed. It is theoretically proved that the transform can maintenance orthogonality of pulse set and high energy concentration in the given frequency domain. Simulation results show that the method can effectively reduce the PAPR of pulse set and preserve the transmission efficiency, the Power Spectral Density (PSD) and Bit Error Ratio (BER) performance of modulated signals.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第6期1406-1412,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60772056) 山东省"泰山学者"建设工程专项经费资助课题
关键词 信号处理 非正弦波 椭圆球面波函数 峰均功率比 Givens旋转 Signal processing Non-sinusoidal wave Prolate Spheroidal Wave Functions (PSWF) Peak-to- Average Power Ratio (PAPR) Givens rotation
  • 相关文献

参考文献15

  • 1Slepian D and Pollak H O. Prolate spheroidal wave functions, Fourier analysis, and uncertainty-I[J]. Bell System Technology Journal, 1961, 40(1): 43-46.
  • 2Pei Soo-chang and Ding Jian-jun. Generalized prolate spheroidal wave functions for optical finite fractional Fourier and linear canonical transforms[J]. The Journal of the Optical Society of America A, 2005, 22(3): 460-474.
  • 3Wang Hong-xing, Zhao Zhi-yong, Liu Xi-guo, et al.. Nonsinusoidal Orthogonal Modulation in time domain [P]. China Patent, ZL200810159238.3, 2009.
  • 4Dullaert W, Reichardt L, and Rogier H. Improved detection scheme for chipless RFIDs using prolate spheroidal wave function-based noise filtering[J]. IEEE Antennas andWireless Propagation Letters, 2011, 10:472 475.
  • 5Sahhi C, Rossi T, and Ruggieri M. Efficient waveform design for high-bit-rate W-band satellite transmissions[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 974-995.
  • 6Wei Li-ying, Kennedy R A, and Lamahewa T A. An optimal basis of band-limited functions for signal analysis and design[J]. IEEE Transactions on Signal Processing, 2011, 58(11): 5744-5755.
  • 7Zha Hui, Ran Qi-wen, Ma Jing, et al.. Generalized prolate spheroidal wave functions associated with linear canonical transform[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3032-3041.
  • 8Wealg Chin-liang and Yuan Ou-yang. Low-complexity selected reaping schemes for peak-to-average power ratio reduction in OFDM systems[J]. IEEE Transactions on Signal Pvcessing, 2005, 53(12): 4652-4660.
  • 9Muller S H and Huber J B. OFDM with reduced peak-to- average power ratio by optimum combination of partial transmit sequences[J]. Electronics Letters, 1997, 33(5): 368-369.
  • 10Ochiai H and Imai H. Performance analysis of deliberately clipped OFDM signals[J]. IEEE Transactions on Communications, 2002, 50(1): 89-101.

同被引文献22

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部