期刊文献+

并行定向扰动的混合粒子群优化算法 被引量:5

Hybrid particle swarm optimization algorithm based on parallel directional turbulence
下载PDF
导出
摘要 针对全向变异易使粒子失去已有的有利搜索信息的问题,提出了一种并行定向变异的混合粒子群优化算法。该算法以当前群体最优位置为基准,用变异信息矩阵和混沌位置变异矩阵对群体进行并行定向扰动,有效利用了现有的有利搜索信息。该算法将并行定向变异与序列二次规划法融为一体,实现了全局搜索和局部寻优的统一。仿真实验和比较分析结果表明并行定向变异混合粒子群优化算法具有良好的、稳定的优化效果。 Aiming at the problem that omnidirectional mutant easily causes particles to lose existing beneficial searching information,the paper presented a hybrid particle swarm optimization algorithm based on parallel directional turbulence.On the basis of optimal location of the current swarm,the algorithm used mutant information matrix and chaotic position mutant matrix to exert parallel directional turbulence on the swarm,and effectively utilized existing beneficial searching information.The algorithm integrated parallel directional turbulence with sequential quadratic programming method so as to realize unification between global search and local search.The simulation and comparative results show that the hybrid particle swarm optimization algorithm based on parallel directional turbulence can achieve more excellent and stable optimization effect.
出处 《计算机应用研究》 CSCD 北大核心 2013年第6期1633-1635,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(50875041) 高等学校博士学科点专项科研基金资助项目(20100042110013)
关键词 粒子群优化 并行定向扰动 变异信息矩阵 混沌位置变异矩阵 序列二次规划 particle swarm optimization parallel directional turbulence mutant information matrix chaotic position mutant matrix sequential quadratic programming
  • 相关文献

参考文献9

二级参考文献55

  • 1赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 2高飞,童恒庆.基于改进粒子群优化算法的混沌系统参数估计方法[J].物理学报,2006,55(2):577-582. 被引量:47
  • 3胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 4丛琳,沙宇恒,焦李成.组织进化粒子群数值优化算法[J].模式识别与人工智能,2007,20(2):145-153. 被引量:6
  • 5Kennedy J, Eberhart R C. Particle swarm optimization [C]// Proceedings of the IEEE Int Conf on Neural Networks. Perth, Australia: IEEE Press, 1995 :1942-1948.
  • 6Shi Y, Eberhart R C. A modified particle swarm optimizer [C]//Proceedings of the IEEE Int Conf on Evolutionary Computation. Anchorage: IEEE Press, 1998:69-73.
  • 7Clerc M. The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization[C]// Proceedings 1999 Congress Evolutionary Computation. Piscataway NJ: IEEE press, 1999:1951-1957.
  • 8Lovbjerg M, Rasmussen T K, Krink T. Hybrid particle swarm optimizer with breeding and subpopulations[C]//Proceedings of Genetic and Evolutionary Computation Conf. San Francisco: Morgan Kaufmann Publishers Ine, 2001; 469- 476.
  • 9He Hong, Qian Feng, Du Wenli. A Chaotic immune algorithm with fuzzy adaptive parameters [J]. Asia-Pacific Journal of Chemical Engineering, 2008, 3(6) : 695-705.
  • 10Mackey M C, Tyran-Kaminska M. Central limit theorem behavior in the skew tent map[J]. Chaos, Solitons and Fractals, 2008, 38(3) : 789-805.

共引文献248

同被引文献63

  • 1李满林,王玉娜,闻英友,杜雷,王光兴.蜂窝系统中一种固定信道分配方法的研究[J].小型微型计算机系统,2004,25(8):1420-1423. 被引量:7
  • 2李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 3徐俊杰,忻展红.基于微正则退火的频率分配方法[J].北京邮电大学学报,2007,30(2):67-70. 被引量:22
  • 4KENNEDY J, EBERHART R C. Particle swarm optimization [ C]// Proceedings of 1995 IEEE International Conference on Neural Net- works. Piscataway: IEEE, 1995, 4: 1942- 1948.
  • 5SUBRAMANIAN P, RAMKUMAR N, NARENDRANA T T, et al. A technical note on ' Analysis of closed loop supply chain using genetic algorithm and particle swarm optimisation' [ J]. International Journal of Production Research, 2012, 50(2): 593-602.
  • 6CLERC M, KENNEDY J. The particle swarm - explosion, stability, and convergence in a multidimensional complex space [ J]. IEEE Transactions on Evolutionary Computation, 2002, 6( 1): 58 -73.
  • 7MENDES R, KENNEDY J. The fully informed particle swarm: simp- ler, maybe better [ J]. IEEE Transactions on Evolutionary Computa- tion, 2004, 8(3): 204-210.
  • 8ZHAN Z H, ZHANG J, LI Y, et al. Orthogunal learning particle swarm optimization [ J]. IEEE Transactions on Evolutionary Compu- tation, 2011, 15(6): 832-847.
  • 9RIGET J, VESTERSTROM J S. A diversity-guided particle swarm optimizer - the ARPSO, EVALife TR 2002-02 [ R]. Aarhus, Den- mark: University of Aarhus. 2002.
  • 10BLACKWELL T. A study of collapse in bare bones particle swarm optimization [ J]. IEEE Transactions on Evolutionary Computation, 2012, 16(3): 354-372.

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部