期刊文献+

一种改进粒子群算法的混合核ε-SVM参数优化及应用 被引量:14

Parameters optimization and implementation of mixed kernels ε-SVM based on improved PSO algorithm
下载PDF
导出
摘要 将径向基核函数和多项式核函数进行线性组合构建了混合核ε-SVM,克服了单核SVM存在的泛化性能弱、学习能力差等弱点;为了同时解决普通粒子群算法存在的后期震荡严重、趋同性强和极易陷入局部极小值等问题,提出了一种改进的PSO算法,并给出了其数学模型和算法流程。该算法将随机粒子个体极值的追随因子增加至动量项和基本粒子群算法的速度项,再将增加追随因子后的动量项回植于更新后的速度项,这样就使得粒子在减缓后期震荡的同时修正了趋同性。通过函数仿真实验和实例验证了所提出的基于改进PSO的混合核ε-SVM算法较其他预测算法具有寻优精度高、收敛速度快、鲁棒性能好和复杂度低等优势。 This paper constructed a mixed-kernel ε-SVM by combining RBF kernel and polynomial kernel linearly in order to use SVM to predict more effectively and overcome some typical shortcomings(like weak generalized performance and learning capability of normal SVM).As there were many problems existing in standard PSO in the process of the latter stage,such as serious concussion,inclination-tendency and the high possibility of being involved in local maximum value,this paper proposed an improved PSO algorithm to solve the above problems at the same time as well as its mathematic model,and gave algorithmic procedure.It imported the following-factor of random-particle's maximum value to the expressions of momentum and the velocity of normal PSO algorithm,then back embedded the new momentum expression to the newly updated velocity formular,by which particle could weaken the concussion and inclination tendency simultaneously.A function simulation and a real-data based experiment prove that the mixed kernel ε-SVM based on improved PSO presented in this paper has good advantages over many other predicting algorithms in forecasting precision,convergence velocity,robustness and simplicity,therefore,it's a valuable regression algorithm to be spread.
机构地区 解放军理工大学 [
出处 《计算机应用研究》 CSCD 北大核心 2013年第6期1636-1639,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(70971137)
关键词 改进PSO 混合核 支持向量机 参数优化 回归预测 improved PSO mixed kernels SVM parameters optimization regression
  • 相关文献

参考文献11

  • 1CHALIMOURDA A, SCHOLKOPF B, SMOLA A J. Experimentally optimal v in support vector regressionfor different noise and parameter settings[ J]. Neural Networks ,2004,17 ( 1 ) : 127-141.
  • 2SUN Jun, FENG Bin, XU Wen-bo. Particle swarm optimization with particles having quantum behavior [ C ]//Proc of Congress on Evolutionary Computation. 2004 : 325- 331.
  • 3SUYKENS J A K, GESTEL T V, BRABANTER J D. Least squares support vector machines [ M ]. Singapore : World Scientific Publishers, 2003.
  • 4杨俊燕,张优云,朱永生.ε不敏感损失函数支持向量机分类性能研究[J].西安交通大学学报,2007,41(11):1315-1320. 被引量:17
  • 5ZHANG Yang, LIU Yun-cai. Traffic forecasting using least squares support vector machines [ J ]. Transportmetrica ,2009,5 (3) : 193- 213.
  • 6RICHARDSON Z J, FITCH J, WU Q H, et al. A probabilistic classifier for transformer dissolved gas analysis with a particle swarm optimizer[ J ]. IEEE Trans on Power Delivery, 2008,23 (2) : 751- 759.
  • 7XU Rui, WUNSCH D C, FRANK R L. Inference of genetic regulatory networks with recurrent neural network models using particle swarm optimization[ J]. IEEE/ACM Trans on Computational Biology and Bioinformatics,2007,4(4) : 681-692.
  • 8ZHANG Y, DING X, LIU Y, et al. An artificial neural network approach to transformer fault diagnosis [ J J. IEEE Trans on Power Delivery, 1996,11 ( 4 ) : 1836 - 1841.
  • 9HUANG C L, WANG C J. A GA-based feature selection and parameters optimization for support vector machines [ J ]. Expert Systems with Applications,2006,31 (2) : 231-240.
  • 10BAR-JOSEPH Z, GERBER G, GIFFORD D K, et al. A new approach to analyzing gene expression time series data[ C]//Proc of the 6th Annual International Conference on Computational Biology. New York : ACM Press,2002:39-48.

二级参考文献29

共引文献70

同被引文献159

引证文献14

二级引证文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部