期刊文献+

蒙古文字母到音素转换方法的研究 被引量:4

Research on grapheme to phoneme conversion for Mongolian
下载PDF
导出
摘要 针对蒙古文字母到音素的转换(grapheme to phoneme conversion,G2P)问题,提出了基于规则的蒙古文G2P转换方法和基于联合序列模型的蒙古文G2P转换方法。实验结果表明,利用联合序列模型的蒙古文G2P转换方法要明显好于基于规则的蒙古文G2P转换方法。并且建立的基于联合序列模型的蒙古文G2P转换系统的词误识率为16.32%,音素误识率仅为3.37%,能达到实用要求。 This paper presented the rule-based Mongolian G2P conversion method and the statistic-based Mongolian G2P conversion method for Mongolian G2P conversion.Experimental results show that Mongolian G2P conversion method based on the joint-sequence model is significantly better than the rule-based Mongolian G2P conversion method.The word error rate is 16.32% and the phoneme error rate is 3.37% for the Mongolian G2P conversion system based on the joint-sequence model,and this system has reached the application requirements.
出处 《计算机应用研究》 CSCD 北大核心 2013年第6期1696-1700,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61263037 71163029) 内蒙古自然科学基金重大资助项目(2011ZD11)
关键词 蒙古文 字母到音素的转换 联合序列模型 联合多元 联合分割 Mongolian grapheme-to-phoneme conversion(G2P) joint-sequence models joint multigram co-segmentation
  • 相关文献

参考文献12

  • 1MENG H M, SENEFF S, ZUE V W. Phonological parsing for bi-directional letter-to-sound / sound-to-letter generation [ C ]//Proc of Workshop on Human Language Technology. 1994: 289-294.
  • 2TORKKOLA K. An efficient way to learn English grapheme-to-phoneme rules automatically[ C ]//Proc of IEEE International Conference on Acoustics, Speech, and Signal Processing. 1993:199-202.
  • 3BAGSHAW P C. Phonemic transcription by analogy in text-to-speech synthesis: novel word pronunciation and lexicon compression [ J ]. Computer Speech & Language, 1998,12 ( 2 ) : 119-142.
  • 4MENG H. A hierarchical lexical representation for bi-directional spelling-to-pronunciation/pronunciation-to-spelling generation [ J ]. Speech Communication,2001,33(3) : 213-239.
  • 5BISANI M, NEY H. Muhigram-based graphenae-to-phoneme conversion for LVCSR [ C ]//Proc of INTERSPEECH. 2003 : 933- 936.
  • 6BELLEGARDA J R. Unsupervised, language-independent grapheme- to-phoneme conversion by latent analogy[ J]. Speech Gommunieation ,2005,46 (2) : 140-152.
  • 7WANG Dong. Out-of-vocabulary spoken term detection [ D ]. Edinburgh : University of Edinburgh. 2010.
  • 8TAYLOR P. Hidden Markov models for grapheme to phoneme conversion[ C ]//Proc of INTERSPEECH. 2005 : 1973-1976.
  • 9BISANI M, NEY H. Joint sequence models for grapheme-to-phoneme conversion [ J]. Speech Communication ,2008,50 ( 5 ) :434-451.
  • 10BAO Fei-long, GAO Guang-lai. Improving of acoustic model for the mongolian speech recognition system [ C ]//Proc of Chinese Conference on Pattern Recognition. 2009: 616-620.

同被引文献11

  • 1Feilong Bao, Guanglai Gao. The Research on Mongo- lian Spoken Term Detection Based on Confusion Net- work[C]//Proceedings of the Chinese Conference on Pattern Recognition (CCPR2012). Beijing, 2012 ; 606- 612.
  • 2Feilong Bao, Guanglai Gao. Improving of Acoustic Model for the Mongolian Speech Recognition System [C]//Proceedings of the Chinese Conference on Pat tern Recognition (CCPR2009). Nanjing, 2009: 616- 620.
  • 3Feilong Bao, Guangiai Gao, Xueliang Yan. Segmenta- tion-based Mongolian LVCSR Approach[C]//Proeeed ings of the 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP2013), Van- couver, 2013.. 8136-8139.
  • 4J Mamou, B Ramabhadran and O Siohan. Vocabulary independent spoken term detection[C]//Proceedings of the ACM-SIGIR'07. Amsterdam, 2007..615-622.
  • 5Ville T. Turunen and Mikko Kurimo, Indexing Confu-sion Networks for MorPh-based Spoken Document Re- trieval [C]//Proceedings of the ACM-SIGIR'07. Am- sterdam, 2007 : 631-638.
  • 6D Wang. Out-of-vocabulary spoken term detection IDa. Ph.[ D]. dissertation University of Edinburgh. 2010.
  • 7G Gosztolya and L Toth. Spoken term detection based on the most probable phoneme sequence[C]//Proceed- ings of the 2011 International Symposium on Applied Machine Intelligence and Informatics ( SAMI ) (IEEE), Slovakia, 2011 : 101-106.
  • 8L Mangu, E Brill, and A Stolcke: Finding consensus in speech recognition: word error minimization and other applications of confusion networks [J]. Comput- er Speech and Language, 2000, 14(4): 373-400.
  • 9Young S, et al. The HTK book (Revised for HTK version 3.4.1)[M]. Cambridge University. 2009.
  • 10A Stolcke. SRILM--An Extensible Language Model- ing Toolkit[C]//Proceedings of Intl. Conf. Spoken Lantguage Processing. Denver, Colorado,2002.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部