期刊文献+

网络空间移动对象模型的应用与发展 被引量:2

Advance in Moving Object Data Modeling under Geographic Network Environment
原文传递
导出
摘要 海量移动对象轨迹数据的涌现促使移动对象数据库成为一个新兴的研究领域。网络空间是人与交通工具移动的主要空间范围,也是移动对象数据库领域最重要的研究空间。网络空间下的移动对象建模是交通科学、社会与城市计算的基础性关键技术。由于受到所依附的地理空间的限制,网络环境下的移动对象数据表达与自由空间相比具有很大的特殊性,面临新的挑战。本文分析了网络空间移动对象建模的基本需求,对20年来,业界提出的各种网络空间移动对象数据模型进行了系统回顾和分类,深入分析了各种网络空间移动对象数据模型的特征、优点与局限性,提出了现阶段网络空间移动对象数据建模需要关注的关键问题,并对未来研究方向进行了展望。 In recent years, along with the rapid development of location technologies such as GPS, RFID and wireless sensor networks as well as the widespread use of location-aware devices such as mobile phones and GPS receivers, large amounts of trajectories of moving objects can be easily acquired. By using moving objects databases, massive trajectories of moving objects can be manipulated and handled for various applications, which makes the study of moving objects databases more and more important. Among the most recent research- es, the study space where moving objects travel can be mainly divided into two types, the Euclidean space and the geographic road networks. In Euclidean space, moving objects can move freely. However, under geographic network environment, moving objects are limited to geographic networks and must follow the road regulation. For the latter research branch is much more practical than the former one, this paper concerns the latter branch and focuses on modeling moving objects in geographic networks, which is the foundation of the study of moving objects databases. It has been a hot research topic in the field of moving objects database management and also provides key technology for many other areas such as transportation, location-based services, urban mobility and social computing. Although it is of great theoretical significance and application value, modeling moving object in geographic networks challenges the research community a lot due to network constraints. In this paper, firstly, most existent geographic network-constrained moving object data models over recent decades has been systemat- ically reviewed and classified. The related literatures show that most geographic network-constrained models can be divided into four categories including edge-based network-constrained model, route-based network-con- strained model, partition-based network-constrained model and spatial-temporal network-constrained model. Then model characteristics, advantages as well as limitations have been elaborately analyzed, based on which, fi- nally some crucial points on modeling moving objects in geographic networks has been proposed and discussed.
出处 《地球信息科学学报》 CSCD 北大核心 2013年第3期328-337,共10页 Journal of Geo-information Science
基金 国家"863"项目(2012AA12A211 2013AA120305) 国家自然科学基金项目(41271408 41101149 41001232)
关键词 移动对象 空间数据库 网络空间 数据模型 轨迹 moving objects databases spatial network data model trajectories
  • 相关文献

参考文献68

  • 1Qi L, Schneider M. MONET: Modeling and querying moving objects in spatial networks[C]. ACM SIGSPA- TIAL International Workshop on GeoStreaming (IWGS), 2012.
  • 2Kim D O, Lee K J, Hong D S, et al. An efficient indexing technique for location prediction of moving objects[J]. Knowledge-Based Intelligent Information and Engineer- ing Systems, 2007(4693): 1-9.
  • 3Huang Y, Chen C, Dong P. Modeling herds and their evolvements from trajectory data[J]. Geographic Informa- tion Science, 2008(5266):90-105.
  • 4Gtiting RH. Moving object databases[M]. United States: Morgan Kaufmann, 2005.
  • 5Yiu M L, Mamoulis N, Papadias D. Aggregate nearest neighbor queries in road networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2005,17(6): 820-833.
  • 6Han J, Li Z, Tang L. Mining moving object, trajectory and traffic data[M]. Berlin:Springer Berlin Heidelberg, 2010.
  • 7Spei:vcys L, Jensen C S, Kligys A. Computational data modeling for network-constrained moving objects[C]. Proceedings of the l lth ACM International Symposium on Advances in Geographic Information Systems, 2003, 118-125.
  • 8Xu J, Giiting R H. A generic data model for moving ob, jects[J]. Geolnformatica, 2012,17(1):125-172.
  • 9Zheng Y, Zhang L, Xie X, et al. Mining correlation be-tween locations using human location history[C]. In Pro- ceedings ofACM SIGSPATIAL Conference on Advances in Geographical Information Systems, 2010,472-475.
  • 10Hu H, Lee D L, Lee V. Distance indexing on road net- works[C]. Proceedings of the 32nd International Confer- ence on Very Large Data Bases, 2006,894-905.

二级参考文献95

共引文献85

同被引文献101

  • 1李德仁,邵振峰.论新地理信息时代[J].中国科学(F辑:信息科学),2009,39(6):579-587. 被引量:106
  • 2维克托·迈尔-舍恩伯格,肯尼思·库克耶.大数据时代[M].杭州:浙江人民出版社,2013:5-25.
  • 3Gross N. The Earth will Don an Electronic Skin [EB/OL]. http://www, businessweek, com/1999/ 99_35/b3644024. htm, 1999.
  • 4Goodchild M F. Citizens as Sensors: The World of Volunteered Geography[J]. GeoJournal, 2007, 69 (4) : 211-221.
  • 5Adshead A. Data to Grow More Quiekly[EB/OL]. http..//www, computerweekly, com/news/2240174 Universe- study, 2 012.
  • 6涂子沛.大数据:正在到来的数据革命[M].桂林:广西师范大学出版社,2013.
  • 7Monica M, Julion U, Sonia S C, et al. Named En- tity Recognition: Fallacies, Challenges and Oppor- tunities[J]. Computer Standards & Interfaces, 2013, 35(5): 482-489.
  • 8Cheng Z, Caverlee J, Lee K. You are Where you Tweet: a Content-based Approach to Geo-loeating Twitter Users [C]. The 19th ACM International Conference on Information and Knowledge Manage- ment, Toronto, Canada, 2010.
  • 9Ikawa Y, Enoki M, Tatsubori M. Location Infer- ence Using Microblog Messages[C]. The 21st In- ternational Conference Companion on World Wide Web, Lyon, France,2012.
  • 10Vasardani M, Winter S, Richter K F. Locating Place Names from Place Descriptions[J]. Interna- tional Journal of Geographical Information Sci ence, 2013, 27(12): 1-24.

引证文献2

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部