期刊文献+

基于多传感器视听融合的三维目标跟踪 被引量:2

3D target tracking based on multi-sensor audio-visual fusion
下载PDF
导出
摘要 目前的跟踪技术主要是用完全基于声音或视觉的传感器,但音频定位具有精度差而覆盖面广的特点,视觉跟踪具有定位精度高而受摄录角度限制的特点,以至于在复杂环境下难以取得理想的跟踪效果。针对这一问题,提出了一种利用从立体视觉和立体音频得到的融合信息对三维物体进行目标跟踪的新方法,介绍了一个包含2个麦克风和立体视觉的简单跟踪系统,由这2个系统提供的定位估计使用一种改进的PSO算法(TRIBES)来融合、综合2种传感器各自的优点。实验表明:与传统的方法相比,这种新技术可以实现更快、更精确的跟踪性能。 Present tracking technology is mainly used solely based on sound or visual sensor.However,audio positioning possess characteristic of poor accuracy and covering a wide range and visual tracking has high positioning precision and limited by video angle.So it is difficult to obtain ideal tracking results in complex environment.To solve this problem,a new method for detecting and tracking object in 3D space using audio and video fused information is proposed.A simple tracking system with two microphones and stereo vision is introduced.The localization estimation provided by these two systems are fused using an improved particle swarm optimization(PSO)TRIBES algorithm.The experiments show that,compared with the traditional method,this new technology can achieve faster and more accurate tracking performance.
出处 《传感器与微系统》 CSCD 北大核心 2013年第6期47-49,52,共4页 Transducer and Microsystem Technologies
关键词 目标跟踪 广义互相关函数 CAMSHIFT TRIBES 立体视觉 target tracking GCC CAMshift TRIBES stereo vision
  • 相关文献

参考文献6

  • 1Strobel N, Spors S, Rabenstein R. Joint audiovideo object loca- lization and tracking [ J ]. IEEE Signal Processing Magazine,2001,18(1 ) :22 --31.
  • 2Krahnstoever N, Yeasin M, Sharma R. Automatic acquisition and initialization of articulated models [ J ]. Machine Vision and Applications ,2003,14 (4) :218 --228.
  • 3Jaina K, Chen Y. Pores and ridges: High-resolution fingerprint match using level 3 features[ J . IEEE Pattern Analysis Machine Intelligence,2007,29 ( 1 ) : 15 --27.
  • 4Cooren Y, Clerc M, Siarry P. MO-TRIBES, an adaptive multiob- jective particle swarm optimization algorithm [ J ]. Comput Optim App1,2011,49 (2) :379 --400.
  • 5王春艳,樊官民,孟杰.基于广义互相关函数的声波阵列时延估计算法[J].电声技术,2010,34(8):37-39. 被引量:8
  • 6申铉京,张博.基于图像矩信息的CamShift视觉跟踪方法[J].北京工业大学学报,2012,38(1):105-109. 被引量:2

二级参考文献13

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2CARTER G C. Coherence and time delay estimation [J]. Proceedings of the IEEE, 1987,75 (2) : 236-255.
  • 3KNAPP CH, CARTER G C. The generalized correlation method for estimation of time delay [J]. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1976,24(4) : 123-128.
  • 4CHEN J D, BENESTY J, HUANG Y T. Performance of GCC and AMDF-based time detay estimation in practical reverberant environments [J]. EURASIP Journal on Applied Signal Processing, 2005 ( 1 ) : 25-36.
  • 5YAO Y, BRENNAN M J, JOSEPH P F. A comparison of time delay estimators for the detection of leak noise signals in plastic water distribution pipes [J]. Journal of Sound and Vibration, 2006,292(3/4/5) : 552-570.
  • 6QIU T, WANG H. An Eckart-weighted adaptive time delay estimation method [J]. IEEE Trans. on Signal Processing, 1996,44(9) : 2332-2335.
  • 7DORIN C, PETER M. MeanShift: a robust approach toward feature space analysis [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24 (5) : 603-619.
  • 8MICHAEL I, ANDREW B. Condensation-conditional density propagation for visual tracking [ J ]. International Journal of Computer Vision, 1998, 29( 1 ) : 5-28.
  • 9GONZALEZ R C,WOODS R E.数字图像处理[M].2版.阮秋琦,阮宇智,译.北京:电子工业出版社,2005:545-548.
  • 10文志强,蔡自兴.目标跟踪中巴氏系数误差的分析及其消除方法[J].计算机学报,2008,31(7):1165-1174. 被引量:13

共引文献8

同被引文献25

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部