期刊文献+

多特征Camshift和Kalman滤波结合的猪只智能跟踪 被引量:12

Pig intelligent tracking based on multi-feature Camshift algorithm combined with Kalman filter
下载PDF
导出
摘要 为了实现猪只的智能跟踪,提出了一种多特征Camshift和Kalman滤波结合的猪只跟踪算法。首先采用最大类间方差法从背景中分割出猪只,从而统计出猪只的颜色特征和纹理特征;然后获取当前帧图像的联合特征概率分布图,利用Camshift算法求得猪只的位置;最后使用Kalman滤波预测猪只下一帧位置,实现多猪只跟踪。研究结果表明,猪只跟踪算法具有较强的鲁棒性,且更好满足实时性的要求。研究结果可为猪只健康养殖提供技术上的支持。 In order to implement the intelligent tracking of pig, pig intelligent tracking algorithm based on multi-feature Camshift combined with Kalman filter is proposed. Firstly, Ostu method was used to divide pig from background, and add up the color feature and texture feature of pig; Then, multi-feature probability distribution of the current frame was produced, and Camshift algorithm was applied to compute pig position; Finally, the next frame's positions are predicted by Kalman filter for multi-pig tracking. The experimental results showed that this pigs tracking algorithm is better in term of robustness and real-time needs. This research can provide technical support for healthy breeding of pigs.
出处 《广东农业科学》 CAS CSCD 北大核心 2013年第9期174-177,188,共5页 Guangdong Agricultural Sciences
基金 广东省科技计划项目(2012A020602043) 广东省大学生创新实验项目(1056411063)
关键词 健康养殖 智能监控 猪只跟踪 LBP CAMSHIFT KALMAN滤波 healthy breeding intelligent monitoring pig tracking LBP Camshift Kalman filter
  • 相关文献

参考文献10

  • 1Weixing Zhu,Fangkui Zhong,Xiangping Li. Automated Monitoring System of Pig Behavior Based on RFID and ARM -LINUX [J]. Intelligent Information Technology and Security Informatics, 2010,62(1) :431-434.
  • 2浦雪峰,朱伟兴,陆晨芳.基于对称像素块识别的病猪行为监测系统[J].计算机工程,2009,35(21):250-252. 被引量:17
  • 3Otsu N. A Threshold Selection Method from Graylevel Histogram[J].IEEE Trans System Man Cybernet, 1978,SMC-8:62-66.
  • 4Bradski G.R. Computer Vision Face Tracking For Use in a Perceptual User Interface[C]//Proceedings IEEE Workshop on Applications of Compu.Pfinceton, NJ,1998:214-219.
  • 5Ojala T, Matti Pietikainen, D. Harwood. A Comparative Study of Texture Measures with Classification based on Feature Distributions[J].Pattern Recognition, 1996,29(1 ):51-59.
  • 6Ojala T, Matti Pietikainen, Topi Maenpaa.Multiresolution Gray- scale and Rotation Invariant Texture Classification with Local Binary Pattems[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987.
  • 7Maenpaa T, M Pietikainen.Handbook of Pattern Recognition and Computer Vision[M].World Scientific,Singapore,2001:711-736.
  • 8钱永青,谢勤岚.结合Camshift和Kalman预测的运动目标跟踪[J].计算机工程与科学,2010,32(8):81-83. 被引量:13
  • 9孙红光,张瑾,刘延涛,卜倩,谢彦南.基于多特征CamShift优化的粒子滤波跟踪[J].光电工程,2010,37(2):1-6. 被引量:5
  • 10M S,Maskell S, Gordon N. A Tutorial On Particle Filters for On-line Nonlinear/Non-Gaussian Bayesian Tracking[J].IEEE Transactions on Signal Processing(S1053-587X),2002,50(2):174- 188.

二级参考文献20

  • 1刘勃,魏铭旭,周荷琴.一种基于区间分布的自适应背景提取算法[J].模式识别与人工智能,2005,18(3):316-321. 被引量:7
  • 2张正华,余松煜,方志军,乔艳涛.实时识别数字和英文字母快速算法的现场可编程门阵列设计[J].上海交通大学学报,2006,40(1):12-15. 被引量:4
  • 3Leroy T, Vranken E. A Computer Vision Method for On-line Behavioral Quantification of Individually Caged Poultry[J]. Transactions of the ASABE, 2006, 49(3): 795-802.
  • 4Shao Bin, Xin Hongwei. A Real'time Computer Vision Assessment and Control of the Thermal Comfort for Group-housed Pigs[J]. Computer and Electronics in Agriculture, 2008, 62(2): 15-21.
  • 5Bradski G R. Computer Vision Face Tracking for use in a Perceptual User Interface [J]. Intel Technology Journal (S1535-864X), 1998, 2(2): 1-15.
  • 6Arulampalam M S, Maskell S, Gordon N. A tutorial on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking [J].IEEE Transactions on SignalProcessing(S1053-587X), 2002, 50(2): 174-188.
  • 7CHENG Chang, Ansari R. Kernel particle filter for visual tracking [J]. IEEE Signal Processing Letters(S 1070-9908), 2005, 12(3): 242-245.
  • 8WANG Zhao-wen, YANG Xiao-kang, XU Yi, et al. CamShift guided particle filter for visual tracking [J]. Pattern Recognition Letters(S0167-8655), 2009, 30(4): 407-413.
  • 9Lu Wei-Lwun, Okuma Kenji, Little James J. Tracking and recognizing actions of multiple hockey players using the boosted particle filter [J]. Image and Vision Computing(S0262-8856), 2009, 27(1/2): 189-205.
  • 10Czyz Jacek, Ristic Branko, Macq Benoit. A particle filter for joint detection and tracking of color objects [J]. Image and Vision Computing(S0262-8856), 2007, 25(8): 1271-1281.

共引文献32

同被引文献111

  • 1陈孜卓,林夕,王中卿.基于论据边界识别的立场分类研究[J].计算机科学,2022,49(S02):132-136. 被引量:1
  • 2崔卫国.猪舍环境设计中的行为学问题浅谈[J].畜牧与兽医,2000(z1):77-81. 被引量:4
  • 3徐建瑜,崔绍荣,苗香雯,刘鹰.计算机视觉技术在水产养殖中的应用与展望[J].农业工程学报,2005,21(8):174-178. 被引量:39
  • 4杨杰,张翔.视频目标检测和跟踪及其应用[M].上海:上海交通大学出版社,2012:159-166.
  • 5Yu Shou Hua,Chen Ji Hong,Ou Jing Ying.Study on the Detection Method of Pigs in Piglet Pigsty Based on the Characteristics of Pigs[J].Advanced Materials Research.2012(403)
  • 6Shao B, Xin H. A real-time computer vision assessment and control of thermal comfort for group-housed pigs[J]. Computers and Electronics in Agriculture, 2008, 62(1): 15-21.
  • 7Costa A, Borgonovo F, Leroy T, et al.. Dust concentration variation in relation to animal activity in a pig barn[J]. Biosystems Engineering, 2009, 104(1): 118-124.
  • 8Beattie V E, Walker N, Sneddon I A. Effects of environmental enrichment on behaviour and productivity of growing pigs[J]. Animal Welfare, 1995, 4(3): 207-220.
  • 9李振波. 基于计算机视觉的育肥猪的自动行为分析系统及方法:中国,201410191838.3[P]. 2014-05-08.
  • 10裘正军. 基于机器视觉的猪舍内猪只标记识别方法:中国,CN201310606328.3[P].2013-11-25.

引证文献12

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部