期刊文献+

Existence of Solution for a Coupled System of Fractional Integro-Differential Equations on an Unbounded Domain

Existence of Solution for a Coupled System of Fractional Integro-Differential Equations on an Unbounded Domain
下载PDF
导出
摘要 We present the existence of solution for a coupled system of fractional integro-differential equations. The differential operator is taken in the Caputo fractional sense. We combine the diagonalization method with Arzela-Ascoli theorem to show a fixed point theorem of Schauder. We present the existence of solution for a coupled system of fractional integro-differential equations. The differential operator is taken in the Caputo fractional sense. We combine the diagonalization method with Arzela-Ascoli theorem to show a fixed point theorem of Schauder.
出处 《Analysis in Theory and Applications》 2013年第1期47-61,共15页 分析理论与应用(英文刊)
关键词 Fractional derivative/integral coupled system Volterra integral equation diagonalization method. Fractional derivative/integral, coupled system, Volterra integral equation, diagonalization method.
  • 相关文献

参考文献25

  • 1W. G. Glockle and T. F. Nonnenmacher, A Fractional calculus approach of self-similar protein dynamics, Biophys. J., 68 (1995), 46--53.
  • 2R. Hilfer, Applications of Fractional Calculus in Phisics, World Scientific, Singapore, 2000.
  • 3E Metzler, W. Schick, H. G. Kilian and T. F. Nonnenmacher, Relaxation in filled polymers: a fractional calculus approach, J. Chem. Phys., 103 (1995), 7180-7186.
  • 4K. B. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differen- tial Equations, Wiely New york, 1993.
  • 5I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
  • 6D. Baleanu, A. K. Golmankhaneh and R. Nigmatullin, Fractional Newtonian mechanics, Central Euro. J. Phys., 8 (2010), 120-125.
  • 7S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1993.
  • 8B. N. Lundstrom, M. H. Higgs, W. J. Spain and A. L. Fairhall, Fractional differentiation by neocortical pyramidal neurons, Nature Neurosci., 11( 11 ) (2008).
  • 9I. Poudlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal., 5 (2002), 367-386.
  • 10A. A. Kilbas, M. Hari and Juan J. Srivastava. Trujillo, Theory and Applications of Fractional Differential Equations, in: Nrth-Holland Mathematics Studies, 204 (2006), Elsevier Science B. V, Amesterdam.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部