期刊文献+

分数阶导数、积分的性质及几何意义 被引量:8

The Properties and Geometric Meaning of Fractional Derivative and Fractional Integral
下载PDF
导出
摘要 介绍了分数阶微积分的历史、分数阶导数和积分的定义,接着给出了分数阶导数、积分的性质,研究了基本初等函数的分数阶导数,以及分数阶积分的结果.最后,给出了分数阶导数、积分的几何意义. The history of fractional calculus, the definition of fractional derivative and fractional integral are described . Then the properties of fractional derivative and fractional integral are given, the results about the fractional derivative and fractional integral of the basic elementary functions are discussed . Finally, the geometric meaning of the fractional integral are also discussed.
作者 武女则
机构地区 天津外国语大学
出处 《哈尔滨师范大学自然科学学报》 CAS 2013年第1期19-22,共4页 Natural Science Journal of Harbin Normal University
基金 天津市高等教育学会"十二五"教育科学规划研究课题(125q186)
关键词 分数阶导数 分数阶积分 初等函数 几何意义 Fractional derivative Fractional integral Basic elementary functions Geometric meaning
  • 相关文献

参考文献8

  • 1Lacroix S F. Traits du calcul diff^rentiel et du calcul integral(Vol. 3 f2nd ed) [ M]. Courcier Paris,1819.
  • 2Kilbas A A,rivastava M,Trujillo J J. Theory and Applicationsof Fractional Differential Equations[ M] . Elsevier, 2006.
  • 3Ahn H S, Chen Y Q, Podlubny I. Robust stability test of aclass of linear time - invariant interval fractional - order sys-tem using Lyapunov inequality. Applied Mathematics andComputation, 2007,187:27 -34.
  • 4El - Borai M M, SaidKh E 1,Nadi El, et al. Fractional evo-lution equations with nonlocal conditions. Int J of Appl Mathand Mech, 2008(6) : 1 -12.
  • 5Shahin A M, Ahmed E, Omar Yassmin A. On fractional or-der quantum mechanics[ J] . International Journal of Nonlin-ear Science,2009 ( 8 ) :469 -472.
  • 6Igor Podlubny. Fractional Differential Equations [ M ]. Aca-demic Press, 1999.
  • 7Oldham K B, Spanier J. The Fractional Calculus. AcademicPress, New York, 1974.
  • 8Trencevski K, Tomovski Z. On fractional derivatives of somefunctions of exponential type. Univ Beograd Publ. ElektrotehnFak Ser Mat, 2002,13:77 -84.

同被引文献58

引证文献8

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部