期刊文献+

基于星光惯性组合的卫星姿态确定方法

Inertial/celestial-based method for satellite attitude determination
原文传递
导出
摘要 基于双星敏感器与陀螺仪组成的星光惯性组合,提出了一种卫星姿态确定方法。双星敏感器分别与陀螺仪采用模糊自适应的无迹Kalman滤波方法进行子系统级的姿态估计,而后采用协方差交集算法框架进行系统级数据融合,从而完成卫星姿态的确定。对典型的卫星大角度快速机动扫描过程以及卫星三轴稳定运动过程的数值仿真,验证了该方法具备实用性与有效性。 An attitude determination method is developed for satellites using an attitude measurement unit comprised of two star trackers and one gyroscope. Each star tracker and the common gyroscope separately form a fuzzy adaptive unscented Kalman filter for attitude estimation in the subsystem level. A covarianee intersection algorithm is then used for data fusion in the system level to achieve the satellite attitude determination. Simulations for the rapid wide-angle scanning case and the three-axis attitude stabilized case demonstrate the feasibility and effectiveness of this approach.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第3期300-306,共7页 Journal of Tsinghua University(Science and Technology)
基金 中国博士后科学基金特别资助项目
关键词 姿态确定 星敏感器 陀螺仪 模糊自适应控制 无迹Kalman滤波 协方差交集算法 attitude determination star tracker gyroscope fuzzy adaptive control unscented Kalman filter covariance intersection algorithm
  • 相关文献

参考文献22

  • 1Lefferts E J, Markley F L, Shuster M D. Kalman filteringfor spacecraft attitude estimation [J]. Journal of Guidance,Control, and Dynamics,1982 , 5(5) : 417 - 429.
  • 2Crassidis J L,Markley F L, Cheng Y. Survey of nonlinearattitude estimation methods [J]. Journal of Guidance,Control * and Dynamics , 2007,30(1): 12 -28.
  • 3Markley F L,Crassidis J L,Cheng Y. Nonlinear attitudefiltering methods [C]//2005 AIAA Guidance, Navigation,and Control Conference and Exhibit. San Francisco, CA,USA, 2005: 1 -32.
  • 4Julier S, Uhlmann J K, Durrant-Whyte H F. A newapproach for filtering nonlinear systems [C]// Proceedings ofthe American Control Conference. Seattle, WA, USA,1995: 1628 - 1632.
  • 5Julier S,Uhlmann J K. Unscented filtering and nonlinearestimation [J]. Proceedings of IEEE, 2004, 92(3):401 -422.
  • 6Crassidis J L, Markley F L. Unscented filtering forspacecraft attitude estimation [J]. Journal of Guidance?Control, and Dynamics , 2003,26: 536 - 542.
  • 7Nebelecky C K. Attitude data fusion using a modifiedRodrigues parameterization [C]//2010 AIAA Guidance,Navigation,and Control Conference. Toronto, Ontario,Canada, 2010: 1 - 16.
  • 8Bae J,Kim Y. Satellite attitude determination and estimationusing two star trackers [C]// AIAA Guidance, Navigation,and Control Conference. Toronto, Ontario, Canada,2010.
  • 9Markley F L. Attitude error representations for Kalmanfiltering [J]. Journal of Guidance,Control,and Dynamics,2003,26(2) : 311 -317.
  • 10范春石.轻型化高性能卫星姿态确定系统及其关键技术研究[D].北京:清华大学,2010.

二级参考文献14

  • 1张春青,李勇,刘良栋.卫星多敏感器组合姿态确定系统中的信息融合方法研究[J].宇航学报,2005,26(3):314-320. 被引量:24
  • 2Lefferts E J, Markley F L, Shuster M D. Kalman filtering for spacecraft attitude estimation [J].J Guid Control Dyn, 1982, 5(5): 417-429.
  • 3Merwe V, Wan E A. Sigma-point Kalman filters for nonlinear estimation and sensor-fusion [C]//AIAA Guid Navigation Control Conf. Providence, RI, USA, 2004, 3: 1735- 1764.
  • 4Crassidis J L, Markley F L. Unscented filtering for spacecraft attitude estimation[J]. J Guid Control Dyn, 2003, 26(4): 536-542.
  • 5Castrejon Lozano J G, Garca Carrillo L R, Dzul A, et al. Spherical simplex sigma-point Kalman filters: A comparison in the inertial navigation of a terrestrial vehicle [C]//Proc American Control Conf. Seattle, WA, USA, 2008.
  • 6Fan C, Meng Z, You Z. Federated sigma point filter for multisensor attitude and rate estimation of spacecraft [C]//Proc SPIE. Beijing, China, 2008. 7129(712929); doi: 10. 1117/12. 807457.
  • 7Bar-Itzhack I Y, Harman R. Optimal fusion of a given quaternion with vector measurements [J]. J Guid Control Dyn, 2002, 25(1): 188-190.
  • 8Markley F L, Cheng Y, Crassidis J L, et al. Averaging quaternions [J].J Guid Control Dyn, 2007, 30(4):1193 - 1196.
  • 9Julier S J, Uhlmann J K. Non-divergent estimation algorithm in the presence of unknown correlations [C]//Proe American Control Conf. Albuquerque, NM, USA, 1997: 2369-2373.
  • 10Franken D, Hupper A. Improved fast covariance intersection for distributed data fusion [C]//7th International Conference on Information Fusion. Philadelphia, PA, USA, 2005, 1: 154 - 160.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部