期刊文献+

磁诱导三维拓扑绝缘体波导中的导模

Guide Modes in Three-dimensional Topological Insulator Waveguide Induced by Magnetic Fields
下载PDF
导出
摘要 在三维拓扑绝缘体表面上外加铁磁条形成的磁势垒量子阱,通过控制入射电子能量,使得入射电子波限制在势阱中传播,并由波函数的连续性求得磁诱导三维拓扑绝缘体波导的色散方程.由于此方程是超越方程,不能解析求解,因此本文采用图解法求解色散方程的解.研究表明:在入射电子能量大于磁势垒和小于磁势垒的情况下,都能够形成波导;当入射电子的能量大于磁矢势时,波导能够支持基模,而且模式阶数也依次递增;而当入射电子能量小于磁矢势时,波导能够承载的导模数量有所减少.通过研究波导中导模几率密度的空间分布,发现三维拓扑绝缘体表面上磁场诱导的电子波导能够很好地束缚电子,而且低阶模对电子的束缚能力强于高阶模.此外,本文也推导出了波导的几率流密度分布的公式. A magnetic quantum well created by putting two ferromagnetic metal stripes on the three-dimensional topological insulator is investigated.The incident electron waves are confined in the quantum well by controlling the incident energy.The dispersion equation of the waveguide is obtained with the continuity of the wave functions.The graphical method is applied to solve this equation since it is a transcendental equation,of which the solution can not be obtained with analytic method.Whether the energy of the incident electrons is higher than the magnetic barrier or not,the electron waveguide can be formed.The waveguide supports the fundamental mode for the higher incident electron energy.The order of the modes increases with the increasing electron energy.The number of the guided modes decreases for the lower incident electron energy.The probability density of spatial distribution is studied.It shows that the three-dimensional topological insulator waveguide induced by magnetic fields can confine electrons well and the lower guided modes can confine electrons better than the higher guided modes.Moreover,the function of the probability current density distribution in the waveguide is also presented.
出处 《光子学报》 EI CAS CSCD 北大核心 2013年第5期564-569,共6页 Acta Photonica Sinica
基金 国家自然科学基金(Nos.11204170 61108010) 上海市自然科学基金(No.11ZR1412300)资助
关键词 拓扑绝缘体 波导 导模 图解法 Topological insulator Waveguide Guided modes Graphical method
  • 相关文献

参考文献15

  • 1QI Xiao liang, ZHANG Shou-cheng. The quantum spin hall effect and topological insulators[J]. Physics Today, 2010, 63 (1) : 3-38.
  • 2HASAN M Z, KANE C L. Colloquium: Topological insulators[J]. Reviews of Modern Physics, 2010, 82(4): 3045-3067.
  • 3QI Xiao liang, ZHANG Shou cheng. Topological insulalors and superconductors[J]. Reviews of Modern Ptzysics, 2011, 83(4) : 1057-1110.
  • 4BERNEVIG B A, HUGHES T L, ZHANG Shou-cheng.Quantum spin hall effect and topological phase transition in HgTe quantum wells[J]. Science, 2006, 314(15): 1757- 1761.
  • 5KONING M, WIEDMANN S, BRUNE C, et al. Quantum spin hall insulator state in HgTe quantum wells[J]. Science, 2007, 318(2): 766-770.
  • 6FU Liang, KANE C L. Topological insulators with inversion symmetry[J]. Physical Review B, 2007, 76(4) : 045302.
  • 7常凯.拓扑绝缘体电子态的电场调控[J].物理,2011,40(7):458-461. 被引量:2
  • 8WU Zhen-hua, PEETERS F M, CHANG Kai. Electron tunneling through double magnetic barriers on the surface of a topological insulalor [J]. Physics Review B, 2010, 82 ( 11 ) : 115211.
  • 9WU Zhen hua, PEETERS F M, CHANG Kai. Spin and momentum filtering of electrons on the surface of a topological insulator[J]. Applied Physics Letters, 2011, 98 (16):162101.
  • 10WANG Hai-yan, CHEN Xiong wen, ZHOU Xiao-ying, et al. Electronic structure and transport on the surface oftopological insulator attached to electromagnetic supperlattice[J]. Physica B, 2012, 407(17): 3664-3670.

二级参考文献15

  • 1Qi X L,Zhang S C. Phys. Today,2010,63:33.
  • 2Hasan M Z,Kane C L. Rev. Mod. Phys. ,2010,82:3045.
  • 3Kane C L,Mele E J. Phys. Rev. Lett. ,2005,95:146802.
  • 4Bernevig B A, Hughes T L, Zhang S C. Science, 2006,314: 1757.
  • 5KOnig M,Wiedmann S,Briine C et al. Science,2007,318:766.
  • 6Fu L,Kane C L,Mele E J. Phys. Rev. Lett. ,2007,98:106803.
  • 7Hsieh D,Qian D,Wray L et al. Nature (London) ,2008,452: 970.
  • 8Chen Y L,Analytis J G,Chu J H etal. Science,2009,352;178.
  • 9Zhang H J,Liu C X,Qi X L etal. Nature Phys. ,2009,5:438.
  • 10Yang W,Chang Kai. Phys. Rev. B,2006,74 : 193314.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部