期刊文献+

模糊Quantale范畴的性质 被引量:2

Some properties of the category of fuzzy Quantales
下载PDF
导出
摘要 引入了模糊Quantale的概念,证明了模糊Quantale范畴同构于L-代数范畴,于是从范畴论的角度说明L-代数也可以看成是Quantale的模糊化结构;给出了模糊Quantale范畴中的极限的具体结构,同时证明了该范畴是完备范畴;给出模糊Quantale范畴中逆系统的逆极限结构,引入了两个逆系统之间映射的定义,由此导出两个逆系统的逆极限之间的极限映射. The concept of a fuzzy Quantale is introduced. It is shown that the category of fuzzy Quantales is isomorphic to the category of L-algebras. This result presents that L-algebras can also be treated as fuzzifications of Quantales from the viewpoint of category theory. The concrete structure of limit in the category of fuzzy Quantales is given; and the completeness of the category of fuzzy Quantales is obtained. The structure of inverse limit of an inverse system in the category of fuzzy Quantales is described. Then a mapping between two inverse systems is defined, and the concept of a limit mapping between the inverse limits of two inverse systems is induced.
作者 汪开云 赵彬
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第3期1-6,12,共7页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11171196 11001158)
关键词 范畴 模糊Quantale L-代数 极限 category fuzzy Quantale L-algebra limit
  • 相关文献

参考文献23

  • 1Mulvey C J. [J]. Rendieonti del ircolo Matematieo di Palermo II, 1986,12 : 99-104.
  • 2Mulvey C J, Pelletier J W. On the quantisation of points [J]. Journal of Pure and Applied Algebra, 2001,159: 231-295.
  • 3Rosenthal K I. Quantales and their applications[M]. New York: Longman Scientific Technical, 1990.
  • 4Zadeh L A. Similarity relations and fuzzy orderings[J]. Information Sciences, 1971, 3(2) : 177-200.
  • 5HOhle U, Blanchard N. Partial ordering in L-underde- terminate sets [J]. Information Sciences, 1985, 35, 133-144.
  • 6Blohldvek R. Fuzzy relational systems foundations and principles[M]. New York: Kluwer Academic Pub- lishers, Plenum Publishers, 2002.
  • 7Bodenhofer U. Similarity-based generalization of fuzzy orderings preserving the classieal axioms [J]. Interna- tional Journal of Uneertainty, Fuzziness and Knowledge Based Systems, 2000, 8: 593-610.
  • 8Bodenhofer U. Representations and constructions of similarity-based fuzzy orderings[J]. Fuzzy Sets and Sys- tems, 2003, 137: 113-136.
  • 9Fan Lei. A new approach to quantitative domain theory [J]. Electronic Notes in Theoretical Computer Science, 2001, 45: 77-87.
  • 10Zhang Qiye, Fan Lei. Continuity in quantitative do- mains [J]. Fuzzy Setsand Systems, 2005, 154: 118-131.

二级参考文献7

  • 1赵东升,数学季刊,1990年,5卷,2期,162页
  • 2王戈平,数学季刊,1988年,3卷,4期,76页
  • 3樊太和,科学通报,1986年,31卷,4期,243页
  • 4王国俊,科学通报,1986年,31卷,16期,1049页
  • 5王国俊,中国科学.A,1983年,13卷,12期,1063页
  • 6Pu Baoming,JMAA,1980年,76卷,2期,571页
  • 7徐晓泉.完全分配格范畴中的乘积和上积及其结构[J].科学通报,1990,35(9):643-646. 被引量:4

共引文献20

同被引文献9

  • 1ROSENTHAL K I.Quantales and their Applications[M].New York:Longman Scientific and Tecnical,1990.
  • 2PAN Fang-fang,HAN Sheng-wei.Free Q-algebras[J].Fuzzy Sets and Systems,2014,247:138-150.
  • 3SOLOVYOV.S A.A representation theorem for quantale algebras[J].Contributions to General Algebra,2008,18:189-198.
  • 4SOLOVYOV.S A.From quantale algebroids to topological spaces:Fixed-and variable-basis approaches[J].Fuzzy Sets and Systems,2010,161:1270-1287.
  • 5WANG Kai-yun,ZHAO Bin.On embeddings of Q-algebras[J].Houston Journal of Mathematics,2016,42(1):73-90.
  • 6HAN Sheng-wei,ZHAO Bin.The quantic conuclei on quantales[J].Algebra Universalis,2009,61:97-114.
  • 7PASEKA J.Quantale Modules[D].Habilitation thesis,Department of Mathematics,Faculty of Science,Masaryk University,Brno,June 1999.
  • 8HAN Sheng-wei,ZHAO Bin.Remark on the unital quantale Q[K].Applied Categorical Structures,2012,20:239-250.
  • 9王蕊,赵彬.Quantale代数及其代数理想[J].模糊系统与数学,2010,24(2):44-49. 被引量:5

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部